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Abstract

In this paper we propose a novel motion model for visual tracking, which can be used
to parameterize instantaneous image motion caused by both object and camera move-
ments. Our approach is inspired by the subspace theory of image motion, that is, for
a rigid object imaged by a projective camera, the displacements matrix of its trajecto-
ries over a short period of time should approximately lie in alow-dimensional subspace
with a certain rank upper bound. We adopt this subspace as thestate transition space
in particle filtering, by which we can obtain a state vector with alterable number of di-
mensions. The dimension number as well as the sampling weight for each dimension at
each moment can be determined by the rank of the subspace. In this way the particle
distribution will be more coincide with the probability of the object state. Based on the
subspace motion model, we derive a new visual tracking approach that can handle more
complicated cases. The subspace is also used to discriminate new feature points of the
object for adaptively updating the motion model. Experimental results and comparisons
demonstrate the effectiveness of the proposed method.

1 Introduction

Visual tracking, in general, is a very important and challenging task within the field of com-
puter vision. The state of this art has been widely studied inthe past decades [21, 22]. While
most of researches focus on exploring new methods to represent object appearance [20, 23,
24], little attention has been paid on the description of object motion. In this paper, we
propose a novel motion model that can better parameterize object motion between adjacent
frames. Our method represents object motion in the subspaceof the displacements matrix of
object appearance trajectories, which is shown to be more consistent with the situation in the
real world. Based on the proposed motion model, the methods based on particle filtering can
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Figure 1: (a) The affine model fails when image deformation happens brought by motion
of a non-plane-like object. (b) The subspace model sample particles on the subspace with
alterable dimensionality, and can build a point-to-point relation between images.

be improved by sampling in the subspace of object motion, which produces great tracking
results on several tough sequences.

The motion model of visual tracking is used to predict the likely state of an object in
successive frames. Due to the great success of Particle Filtering (PF) [1, 10, 13], which is
also known as sequential Monte Carlo methods, visual tracking has been formulated as a
problem of Bayesian inference in the state space. The performance of this technique greatly
depends on the choice of state transition space. The common approach is to sample in the
vector space of the affine transformation under a set of localimage coordinates. As shown
in Figure 1:(a), the model uses an affine matrix to map every pixel within the object area of a
frame to a new position in the next frame. A recently developed motion model [14] regards
the set of affine transformation as a curved space possessingthe structure of a Lie group.
The affine model works well when dealing with the projection of plane-like objects (e.g.
book cover, license plate). However, when objects are not plane-like, as the most probable
situations in the real world, object motion will naturally bring image deformation, which may
violate the relative relationship of projected pixels in affine space. In this case, applying the
same transition vector to all pixels as affine model implies is obviously improper. Another
problem of affine model is that, it is hard to determine the weight of each dimension in the
affine state vector during the tracking process, so the prediction stage of PF is guideless and
may need much more particles to cover the possible object motion state.

An ideal motion model should have the ability to describe theinstantaneous motion of
a rigid object caused by both object and camera movements, and meantime should be able
to estimate the sampling weight of each dimension of the state vector. Our key insight is
that we can build such a model by leveraging the well-known subspace theory of motion,
which tells us that a matrix of motion trajectories’ displacements of a rigid object imaged by
a moving camera over a short period of time should approximately lie in a low-dimensional
subspace [12, 18]. A displacements matrix is composed of feature points displacements of
the object relative to a reference frame in a short period of time. In particular, for instanta-
neous motions the subspace should be ranked at most 9, while in real situations the rank is
usually smaller [12]. This important theory has been used to help solve a number of problems
in computer vision, including structure from motion [7, 18], correspondence estimation [12],
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motion segmentation [19], and video stabilization [15]. Under this subspace constraint, the
displacements matrix can be factored into a product of a frame-dependent matrix and a point-
dependent matrix. If all trajectories are complete, the displacements matrix is complete and
the factorization process is linear, fast, and robust. For an incomplete matrix, factorization is
a nonlinear problem, which is well-studied [4, 5, 6] and also can be done stably.

We introduce the subspace motion model for visual tracking by adopting the subspace of
object motion as the state transition space in PF. The brief idea is illustrated in Figure 1:(b).
By sampling in the motion subspace, the particle distribution will be more coincide with
the probability of potential object state, because the dimensionality of PF state vector and
the weights for each dimension are calculated dynamically by the object motion complexity
at each moment. We use the rank of the subspace to measure the complexity. The rank
can be computed automatically by the singular values of the displacements matrix. Besides,
the subspace motion model has the capability to naturally represent the disparity brought by
object or camera rotation via the correspondence of featurepoints between tracked frames, as
each particle in the subspace corresponds to a group of points in the current frame. The newly
detected feature points in each frame can be easily identified to belong to the object or not,
this can achieved by supervising the variation of the subspace rank, and a new point should
belong to the object if it lies on the same subspace with existing object points. Based on
the subspace motion model, we introduce a complete trackingmethod with a feature-points-
based appearance description, while theoretically the proposed motion model is compatible
with any appearance model.

2 Subspace Theory

The most common situation in visual tracking is to work with aperspective camera. In
general, the motion trajectories from a perspective camerawill lie on a nonlinear manifold
instead of a linear subspace [8]. However, it is possible to approximate the manifold locally
(over a short period of time) with a linear subspace.

We first compute the displacements matrix of the object over the frames patch at timet.
The set of 2D feature trajectories is tracked by the standardKLT approach [17]. Let I j denote
a frame in the sequence, a frames patch includesk successive frames contiguous beforeIt ,
i.e. frameIt−k to It−1. The patch will update with time by adding the newly tracked frame
and deleting the oldest frame. All frames containn continuous feature points within the
object area. Let(ui j,vi j) denote the displacement of point(xi,yi) from the reference frame
I (e.g. the first frame in the frames patch) to frameI j (i = 1. . .n, j = 1. . .k). Let U and
V denote twok× n matrices constructed from the displacements of all the points across the
patch, the displacements matrix is built by:

U =











u11 u22 . . . un1

u12 u22 . . . un2
...

u1k u2k . . . unk











,V =











v11 v22 . . . vn1

v12 v22 . . . vn2
...

v1k v2k . . . vnk











(1)

Each row in the matrices of Equation (1) corresponds to a single frame, and each column
corresponds to a single point.

According to the subspace theory, although the matricesU andV are large, their ranks
are small. This low-rank constraint will be exploited to build the PF state transit space.
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Particularly, we stackU andV in Equation (1) vertically as[U
V ]2k×n. It is worth noting that,

in this situation, we need to meetk ≥ 5 andn ≥ 9 to make sure the scale of the displacement
matrix beyond the subspace rank upper bound. Fortunately, for our application thatk is
small, there should be a reasonable number of complete trajectories that already span allk
frames and describe the subspace.

2.1 Subspace Decomposition

Under the perspective camera model, Irani [12] showed that in the instantaneous case, when
the rotation angle is small and the forward translation is small, the 2D displacement(ui j,vi j)
of (xi j,yi j) between frameI j and reference frameI can be rewritten as a bilinear product:

[

ui j

vi j

]

2×1
=

[

(MU ) j

(MV ) j

]

2×9
Pi(9×1) (2)

wherePi is a point-dependent column vector (i = 1. . .n) involving only points positions
parameters, while(MU) j and(MV ) j are frame-dependent row vectors (j = 1. . .k) involving
only camera motion parameters.

Therefore, the displacements matrix of all points across all frames can be expressed as a
bilinear product of matrices:

[

U
V

]

2k×n
=

[

MU

MV

]

2k×r
P(r×n) (3)

where the upper bound of rankr is 9.
By employing the theory of Equation (3), we may factorize thedisplacements matrix to

get the frame-dependent matrix[MU
MV

]2k×r and the point-dependent matrixPr×n. We do this
subspace decomposition in the displacements matrix of every frames patch. The decompo-
sition is calculated by Singular Value Decomposition (SVD)[9]. We truncate the out put of
SVD to the rows, columns, and values corresponding to the largestr singular values, and
then distributing the square root of each singular value to the left (frames) and right (points)
matrices.

2.2 Subspace Rank Detection

In practice, due to the degenerate camera motions or degenerate scene structures, the actual
rank of the subspace matrices is often much smaller than the theoretical upper bound. We
detect the actual rank of the subspace automatically duringthe process of subspace decom-
position.

Let [U
V ] be the 2k×n displacements matrix of the frames patch with the actual rank r and

rank upper boundr′. The rank reduction is done with the singular values calculated by SVD,
which is the same process to Section 2.1. Letλ1 ≤ λ2 ≤ . . . ≤ λm be the singular values of
[U

V ], wherem = min(2k,n). We check for the existence of a lower rankr′′ such that:

‖
λr′′+1

λ1
‖< ε (4)

whereε is the threshold set for some noise tolerance. We usually chooseε ≈ 1%.
We setr to ber = min(r′,r′′) and all singular values other than ther largest ones to be

zero (i.e.λr+1 = λr+2 = . . .= λm = 0). The matrices produced from the SVD (with the new
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Figure 2: Flow chart of the subspace motion model

singular values) then can be truncated and recomposed, yielding a new displacements matrix
of rankr. This new matrix is closest to[U

V ] in the Frobenius norm.

3 Tracking via Subspace Motion Model

We now explain in detail our visual tracking approach based on subspace motion model in
this section. We start with a detailed description of the subspace motion model, the flow chart
of which is shown in Figure 2. We then build the complete tracking process and introduce
the method to update the displacements matrix during the tracking process.

3.1 Subspace Motion Model

After we have obtained the frame-dependent matrix[MU
MV

]2k×r and the point-dependent matrix
Pr×n of the frames patch with a certain rank upper bound, we may nowbuild the subspace
motion model of visual tracking by sampling particles on subspace. As the motions of cam-
era and object are relative, we may always deem a moving camera with a static object. Then
the state transition may be considered only happen in[MU

MV
]2k×r, while Pr×n remain the same.

So the initial state of the PF can be described in subspace as:

xt−1 =

[

(MU )k−1

(MV )k−1

]

2×r
(5)

where(MU )k−1 and(MV )k−1 are the last rows ofMU andMV respectively, corresponding to
the frame-dependent vectors of last frameIt−1.

In the prediction stage of PF, the samples in the state space are propagated through a
dynamic model, which is usually an autoregressive process (AR). Here we use a first-order
AR model for fair comparison and simplicity:

xt = xt−1+∆m (6)

where∆m is a two-row weighted Gaussian random sample drawn from the normal distribu-
tion. Each row of∆m is a multivariate vector sample correspond to the oscillation of camera
parameters vertically or horizontally. And columns of∆m are Gaussian random numbers
multiplied by the weight of each subspace dimension, which is measured by the singular
values from SVD used in subspace decomposition and defined as:

ωi = ‖
λi

λ1
‖ (7)
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whereωi is the weight of each dimension (i.e. each column of∆m), andλi is the i-th largest
singular value from SVD.

In fact, each particlex in subspace is corresponding to a group of feature points positions
in current frameIt . Let X be the set of feature points positions in the reference frameI, a
prediction of points positionsXt in current frame can be computed by:

Xt = (xt−1+∆m)P+X (8)

Since the sampling is on the subspace of the displacements matrix over a short period of
k frames, the distribution of particles will be constrained by the complexity of object motion
in this period of time. This complexity is represented by therank r in our subspace mo-
tion model and is dynamically detected for every displacements matrix in each frames patch.
Therefore the dimensionality of the PF state vector is alterable during the whole tracking
process which is very different from the traditional PF tracking model. Meanwhile, the sam-
pling weight of each vector dimension is also calculated automatically by the model. This
will lead to a flexible and adaptable states prediction stageof PF. As a result, particles will
lie in a distribution coincide with the object history moving area in the period of time, which
will naturally be considered a more likely potential objectarea. What’s more, the subspace
motion model could reach to a point-to-point mapping of the object image. This mapping
solved the disparity problem, as it could be used to guide theobject template warping or
be used directly to match the object, both of which could surely reach to a more precise
appearance matching result.

3.2 Tracking Approach

Based on the subspace motion model we proposed in previous sections, we can now exploit a
complete visual tracking algorithm. We firstly initialise the object feature points trajectories
in the beginningk frames, which are used to locate the object in these frames and build the
first displacements matrix. We usually setk = 6 to 10 to maintain the reliability of points
tracking, surpass the subspace rank and keep enough complete trajectories (to ensure that
n ≥ 9). However, there is no need to setn a very large number. For most cases, we letn ≤ 30
to reduce the computation cost.

We represent the state vector of PF as the positions of all feature points spanning the
frames patch, and take the KLT points tracking resultsYt in current frameIt as the ob-
servation state. The posterior is approximated by a finite set of N samples{xi

t}i=1,...,N on
subspace, corresponding toN groups of predicted feature points positions{Xi

t}i=1,...,N in
current frame. In our approach,N is usually set 400 to 600. The importance weightswi

t of
each particle is estimated by the exponent projection of theEuclidean distance between the
predicted points positions and the observation, which could be represented by:

wi
t =

1
Wt

exp(−
1
η
‖Xi

t −Yt‖
2
F) (9)

whereWt = ∑N
i=1exp(− 1

η ‖Xi
t −Yt‖

2
F) is the normalization term, andη the smooth term usu-

ally set to be 0.2. Note that the SVD used in subspace decomposition won’t break the order
of trajectories in matrix, so the points correspondence betweenYt andXt can be ensured.

Then the tracking resultZt is represented by:

Zt =
N

∑
i=1

wi
tX

i
t (10)
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with the tracking error measured by:

errt =
1
N
‖Zt −Yt‖

2
F (11)

We use an iterative strategy to control the tracking error into a level of under 0.5 pixel,
while it could be more than 1.0 pixels before iteration. We take thexi

t corresponding to theXi
t

with the smallest distance toYt as the initial state of next iteration, and sample particleswith
a smaller Gaussian variance (usually set to be half of that inlast iteration). The iterations
may be expected to be less than 3 according to our experiments. After we gotZt , we may
locate the object in current frameIt using the points correspondence betweenZt−1 andZt .
The typical method is to take the displacement of the object as the average displacements of
the points inZt , and the scale changing as the average of all the ratios between current point
distance and previous point distance for each pair of points.

3.3 Updating Displacements Matrix

A tough problem in visual tracking is to deal with the changing of object appearance with
time. As object moves, there is always part of the object appearance disappearing and new
object area arising, which in our approach means the lost of existing object feature points and
the addition of new object feature points. The key is to find a method to discriminate whether
a newly detected point belongs to the object, or otherwise belongs to the background. For-
tunately, this challenging problem can be easily solved with our subspace motion model by
adopting the idea that, all feature trajectories of the object within the current frames patch
should lie on the same subspace. This means the rank of the displacements matrix will re-
main unchanged when a new point added into the matrix belongsto the object, although the
specific singular values from SVD will be affected generally.

Assume that we haven′ newly detected feature points spanning the current frames patch.
Let the displacements of one of these points be the column vector of (u′j,v

′
j)

T , j = 1, . . . ,n′.

We add each of these column vectors into the existing 2k× n displacements matrix[U
V ] as a

new column to obtain:

[

U u′j
V v′j

]

2k×(n+1)

=





















u11 . . . un1 u′j1
...

...
u1k . . . unk u′jk
v11 . . . vn1 v′j1

...
...

v1k . . . vnk u′jk





















(12)

Then the point will be considered as belongs to the object when the rank of the left matrix
in Equation (12) is the same to the rank of[U

V ]. So that the displacements matrix can be
replenished and updated. The rank number is detected by singular values from SVD via the
same method introduced in Section 2.2.

4 Experiments

To examine the effectiveness of our proposed tracking method, we tested it on several chal-
lenge videos and do comparison with four other tracking algorithms that represent the state of
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(a) Tracking result of our tracker on sylv sequence (b) Tracking result of other trackers on sylv sequence

(c) Tracking result of our tracker on cube sequence (d) Tracking result of other trackers on cube sequence

Our tracker MILOAB IVTL1APG

Figure 3: Experimental results comparison (1)

the art, including Real-time L1 Tracker (L1APG) [3], Multiple Instance Learning (MIL) [2],
Online AdaBoost (OAB) [11] and Incremental Visual Tracking (IVT) [16]. We get the source
code or the binaries from the authors with the same initial positions at the first frame in order
to be more comparative. The videoscube andsylv are collected from prior work [2, 14]. We
also made our own sequences oftoybear, penholder andvehicle.

4.1 Qualitative Comparison

We compare our algorithm with other four trackers in five video sequences. The first video
contains a toy undergoing lot of pose changes, as well as someilluminance variation. Some
selected frames of our tracker and other trackers are shown in Figure 3 (a) and (b). The OAB
tracker first lost the target in frame 450. Our tracking approach can track through the whole
sequence well.

In the second video, a cube held by a hand is doing all sorts of rotation and the scale
of the object changed a lot too. In this sequence, all other four tracking approach failed
very quickly, the IVT tracker can not even work for 20 frames.But our tracker based on
the subspace motion model can handle this sequence very well, including dealing with the
rotation and focal changing. The result images are selectedand shown in Figure 3 (c) and
(d).

In the third video, a toy bear holding by a hand doing all kindsof poses. The bear’s
appearance is irregular, and the projection area of the object in the image is always in defor-
mation. There are many drifts happens for the other four tracker, especially the MIL tracker
shown as the green color rectangle. Our tracking approach isvery stable. Some selected
frames of our tracker and other trackers are shown in Figure 4(a) and (b).

In the fourth video, a static pen holder shot by a moving camera. There is a bulging area
in the front of the pen holder. Therefore, when the camera moves rotatingly, our subspace
tracker has the advantage to deal with this situation. Some selected frames of our tracker and
other trackers are shown in Figure 4 (c) and (d).
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(a) Tracking result of our tracker on toybear sequence (b) Tracking result of other trackers on toybear sequence

(c) Tracking result of our tracker on penholder sequence (d) Tracking result of other trackers on penholder sequence

(e) Tracking result of our tracker on vehicle sequence (f) Tracking result of other trackers on vehicle sequence

Our tracker MILOAB IVTL1APG

Figure 4: Experimental results comparison (2)

The last sequence (Figure 4 (e) and (f)) is a vehicle car reversing back to the parking lot.
The appearance of the vehicle varies large. Therefore, the other four trackers partly or fully
drift away, and only our subspace tracker can through the whole sequence well.

4.2 Quantitative Comparison

For quantitative comparison, we label the ground truth position of each frame manually. The
pixel-wise tracking errors, which are measured by the Euclidean distance from the center of
the target to the ground truth, are then calculated. The results are shown in Table 1. The
errors are ideally zero. Compared with other methods, our method achieves smaller pixel-
wise tracking errors.

5 Conclusion

In this paper, we have proposed a novel motion model for visual tracking by using the sub-
space theory on the displacements matrix of a rigid object. This subspace motion model is
capable to describe the image deformation brought by motionof non-plane-like object as it
can reach to a point-to-point mapping of the object image. This model also has the capabil-
ity to calculate dynamically and automatically the dimensionality of PF state vector and the
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sylv cube toybear penholder vehicle
L1APG 11.79 12.45 10.85 15.20 16.61
MIL 7.45 36.41 17.85 18.61 8.19
OAB 10.79 39.04 12.02 18.13 6.45
IVT 12.32 61.42 18.56 14.10 18.61
Ours 4.55 4.19 7.48 15.72 5.23

Table 1: The pixel-wise tracking errors for different sequences and tracking methods.

weights for each dimension, by taking advantage of the subspace rank of the displacements
matrix and the singular value for each dimension. Thereforethe particle distribution from
the PF process could cover the probable object motion statesmore accordantly. Based on this
subspace motion model, we derived a new visual tracking method that can nicely deal with
the appearance changing of the object by means of supervising the variation of the subspace
rank. The feasibility of our approach bas been effectively demonstrated via comparative
experimental studies.
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