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Abstract

In this paper we propose a novel motion model for visual tiragkwhich can be used
to parameterize instantaneous image motion caused by bght@nd camera move-
ments. Our approach is inspired by the subspace theory afemaotion, that is, for
a rigid object imaged by a projective camera, the displacgsnematrix of its trajecto-
ries over a short period of time should approximately lie Iove-dimensional subspace
with a certain rank upper bound. We adopt this subspace astdke transition space
in particle filtering, by which we can obtain a state vectotimalterable number of di-
mensions. The dimension number as well as the sampling wigighach dimension at
each moment can be determined by the rank of the subspachisiwady the particle
distribution will be more coincide with the probability die object state. Based on the
subspace motion model, we derive a new visual tracking agprthat can handle more
complicated cases. The subspace is also used to discramieat feature points of the
object for adaptively updating the motion model. Experitaéresults and comparisons
demonstrate the effectiveness of the proposed method.

1 Introduction

Visual tracking, in general, is a very important and chajieg task within the field of com-
puter vision. The state of this art has been widely studie¢derpast decade&1, 22]. While
most of researches focus on exploring new methods to regrebgct appearanc@(), 23,
24], little attention has been paid on the description of objaotion. In this paper, we

propose a novel motion model that can better parameterigetaiotion between adjacent
frames. Our method represents object motion in the subsdalee displacements matrix of

object appearance trajectories, which is shown to be marsistent with the situation in the
real world. Based on the proposed motion model, the methaskscbon particle filtering can
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Figure 1: (a) The affine model fails when image deformatioppess brought by motion
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be improved by sampling in the subspace of object motion¢clwvproduces great tracking
results on several tough sequences.

The motion model of visual tracking is used to predict thelljkstate of an object in
successive frames. Due to the great success of Partiokifgt(PF) [L, 10, 13], which is
also known as sequential Monte Carlo methods, visual tnackies been formulated as a
problem of Bayesian inference in the state space. The peaioce of this technique greatly
depends on the choice of state transition space. The comppyoach is to sample in the
vector space of the affine transformation under a set of iotagje coordinates. As shown
in Figure 1:(a), the model uses an affine matrix to map evesi piithin the object area of a
frame to a new position in the next frame. A recently devetopetion model 14] regards
the set of affine transformation as a curved space possebargjructure of a Lie group.
The affine model works well when dealing with the projectidmptane-like objects (e.g.
book cover, license plate). However, when objects are raoteplike, as the most probable
situations in the real world, object motion will naturallsitg image deformation, which may
violate the relative relationship of projected pixels ifireg space. In this case, applying the
same transition vector to all pixels as affine model implgesbviously improper. Another
problem of affine model is that, it is hard to determine thegliebf each dimension in the
affine state vector during the tracking process, so the gtiedistage of PF is guideless and
may need much more particles to cover the possible objedbmstate.

An ideal motion model should have the ability to describeitfs#antaneous motion of
a rigid object caused by both object and camera movemerdsnaantime should be able
to estimate the sampling weight of each dimension of the stattor. Our key insight is
that we can build such a model by leveraging the well-knowrspace theory of motion,
which tells us that a matrix of motion trajectories’ dismatents of a rigid object imaged by
a moving camera over a short period of time should approxypée in a low-dimensional
subspacel2, 18]. A displacements matrix is composed of feature pointsldgments of
the object relative to a reference frame in a short periodhaé.t In particular, for instanta-
neous motions the subspace should be ranked at most 9, whi#ealisituations the rank is
usually smaller]2]. Thisimportanttheory has been used to help solve a nunflpeoblems
in computer vision, including structure from motiof [Lg], correspondence estimatioh?],
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motion segmentatiorilp], and video stabilizationl5]. Under this subspace constraint, the
displacements matrix can be factored into a product of adrdependent matrix and a point-
dependent matrix. If all trajectories are complete, theldisements matrix is complete and
the factorization process is linear, fast, and robust. Ragneomplete matrix, factorization is
a nonlinear problem, which is well-studied] b, 6] and also can be done stably.

We introduce the subspace motion model for visual trackingdopting the subspace of
object motion as the state transition space in PF. The latéef is illustrated in Figure 1:(b).
By sampling in the motion subspace, the particle distrdoutvill be more coincide with
the probability of potential object state, because the dsimnality of PF state vector and
the weights for each dimension are calculated dynamicgliynb object motion complexity
at each moment. We use the rank of the subspace to measurentipdegity. The rank
can be computed automatically by the singular values of is@atements matrix. Besides,
the subspace motion model has the capability to naturgtisesent the disparity brought by
object or camerarotation via the correspondence of feahirgs between tracked frames, as
each particle in the subspace corresponds to a group ofpoitfite current frame. The newly
detected feature points in each frame can be easily idehtdibelong to the object or not,
this can achieved by supervising the variation of the sutEspank, and a new point should
belong to the object if it lies on the same subspace with iexjsibject points. Based on
the subspace motion model, we introduce a complete trackatgod with a feature-points-
based appearance description, while theoretically thpgs®d motion model is compatible
with any appearance model.

2 Subspace Theory

The most common situation in visual tracking is to work witlperspective camera. In
general, the motion trajectories from a perspective caméldie on a nonlinear manifold
instead of a linear subspad#.[However, it is possible to approximate the manifold Idgal
(over a short period of time) with a linear subspace.

We first compute the displacements matrix of the object dverftames patch at tinte
The set of 2D feature trajectories is tracked by the stanidafdapproach 7). Let|; denote
a frame in the sequence, a frames patch inclkdasccessive frames contiguous befgre
i.e. framel;_g to I;_1. The patch will update with time by adding the newly trackezhfe
and deleting the oldest frame. All frames contaicontinuous feature points within the
object area. Letu;j,Vvij;) denote the displacement of poifx,y;) from the reference frame
| (e.g. the first frame in the frames patch) to framé¢i =1...n,j =1...k). LetU and
V denote twdk x n matrices constructed from the displacements of all thetp@iaross the
patch, the displacements matrix is built by:

Uiz U2 ... Unm Vi1 V22 ... Vm
U2 Uz2 ... Un2 Vizg V2o ... Vp2

U= . V= . 1)
Uik Uz ... Upk Vik Vok ... Vnk

Each row in the matrices of Equation (1) corresponds to desifigme, and each column
corresponds to a single point.

According to the subspace theory, although the matticesndV are large, their ranks
are small. This low-rank constraint will be exploited to lduihe PF state transit space.
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Particularly, we stack) andV in Equation (1) vertically a‘@%]gkxn. It is worth noting that,

in this situation, we need to meet> 5 andn > 9 to make sure the scale of the displacement
matrix beyond the subspace rank upper bound. Fortunatalygur application thak is
small, there should be a reasonable number of completetoaijes that already span &l
frames and describe the subspace.

2.1 Subspace Decomposition

Under the perspective camera model, Irdr#] [showed that in the instantaneous case, when
the rotation angle is small and the forward translation ial§rthe 2D displacemerts;, vij)
of (xij,Vij) between framé; and reference framlecan be rewritten as a bilinear product:

wl =[], e

wherePR is a point-dependent column vectar= 1...n) involving only points positions
parameters, whiléMy ); and(My ); are frame-dependent row vectojs< 1...k) involving
only camera motion parameters.

Therefore, the displacements matrix of all points acrddsahes can be expressed as a
bilinear product of matrices:

u MU]
= P (3)
[V} 2kxn [MV 2kxr (rxn)

where the upper bound of ramks 9.

By employing the theory of Equation (3), we may factorize digplacements matrix to
get the frame-dependent matl[i%]zer and the point-dependent mati®k.,. We do this
subspace decomposition in the displacements matrix of/éxemes patch. The decompo-
sition is calculated by Singular Value Decomposition (S\8]) We truncate the out put of
SVD to the rows, columns, and values corresponding to thge$dr singular values, and
then distributing the square root of each singular valubédeft (frames) and right (points)
matrices.

2.2 Subspace Rank Detection

In practice, due to the degenerate camera motions or degjerseene structures, the actual
rank of the subspace matrices is often much smaller tharhtreretical upper bound. We
detect the actual rank of the subspace automatically dtineg@rocess of subspace decom-
position.

Let [%] be the X x ndisplacements matrix of the frames patch with the actud ramd
rank upper bound. The rank reduction is done with the singular values catedlay SVD,
which is the same process to Section 2.1. AeK A, < ... < Ay, be the singular values of
[&], wherem= min(2k,n). We check for the existence of a lower raffksuch that:

H )\r”+l
A1

wheree is the threshold set for some noise tolerance. We usuallgsge~ 1%.
We setr to ber = min(r’,r”) and all singular values other than théargest ones to be
zero (i.e.Ari1 = Ari2 = ... = A= 0). The matrices produced from the SVD (with the new

|<e (4)
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Figure 2: Flow chart of the subspace motion model

singular values) then can be truncated and recomposedinged new displacements matrix
of rankr. This new matrix is closest ti%] in the Frobenius norm.

3 Tracking via Subspace Motion M odel

We now explain in detail our visual tracking approach basedubspace motion model in
this section. We start with a detailed description of thespalce motion model, the flow chart
of which is shown in Figure 2. We then build the complete tmagkprocess and introduce
the method to update the displacements matrix during tlo&itrg process.

3.1 Subspace Motion Model

After we have obtained the frame-dependent mé%vié(]ZkX, and the point-dependent matrix
P «n of the frames patch with a certain rank upper bound, we maymald the subspace

motion model of visual tracking by sampling particles onspdre. As the motions of cam-
era and object are relative, we may always deem a moving eawitr a static object. Then

the state transition may be considered only happé%'ﬂrjzm, while B« remain the same.

So the initial state of the PF can be described in subspace as:

_ [(Mu)k-1

where(My )k-1 and(My )x_1 are the last rows dfly andMy respectively, corresponding to
the frame-dependent vectors of last fraing.

In the prediction stage of PF, the samples in the state spacprapagated through a
dynamic model, which is usually an autoregressive prockR3.(Here we use a first-order
AR model for fair comparison and simplicity:

Xt = Xi_1+Am (6)

whereAm is a two-row weighted Gaussian random sample drawn fromah@al distribu-
tion. Each row ofAm is a multivariate vector sample correspond to the osailtatif camera
parameters vertically or horizontally. And columnsfrh are Gaussian random numbers
multiplied by the weight of each subspace dimension, whicméasured by the singular
values from SVD used in subspace decomposition and defined as

Ai
W= ||/\—1|| (7)
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whereq is the weight of each dimension (i.e. each columiwf), andA; is the i-th largest
singular value from SVD.

In fact, each particlg in subspace is corresponding to a group of feature poinitiqus
in current framd;. Let X be the set of feature points positions in the reference frgrae
prediction of points positionX; in current frame can be computed by:

Xt = (Xt—1+Am)P+ X (8)

Since the sampling is on the subspace of the displacemetix imeaer a short period of
k frames, the distribution of particles will be constraingdihe complexity of object motion
in this period of time. This complexity is represented by thekr in our subspace mo-
tion model and is dynamically detected for every displageimatrix in each frames patch.
Therefore the dimensionality of the PF state vector is afitter during the whole tracking
process which is very different from the traditional PF kiag model. Meanwhile, the sam-
pling weight of each vector dimension is also calculatedatically by the model. This
will lead to a flexible and adaptable states prediction stHdeF. As a result, particles will
lie in a distribution coincide with the object history mogiarea in the period of time, which
will naturally be considered a more likely potential objacta. What's more, the subspace
motion model could reach to a point-to-point mapping of thgeot image. This mapping
solved the disparity problem, as it could be used to guideottject template warping or
be used directly to match the object, both of which could lsureach to a more precise
appearance matching result.

3.2 Tracking Approach

Based on the subspace motion model we proposed in previctigrse we can now exploita
complete visual tracking algorithm. We firstly initialigeet object feature points trajectories
in the beginning frames, which are used to locate the object in these franekbuiid the
first displacements matrix. We usually ¢et 6 to 10 to maintain the reliability of points
tracking, surpass the subspace rank and keep enough certrpliectories (to ensure that
n>9). However, there is no need to sat very large number. For most cases, wanlst30

to reduce the computation cost.

We represent the state vector of PF as the positions of dlife@oints spanning the
frames patch, and take the KLT points tracking resifl{Sn current framel; as the ob-
servation state. The posterior is approximated by a finite&sl samples{x}}i_1 .
subspace, corresponding kbgroups of predicted feature points positioﬁs{}izl’_,_,
current frame. In our approach, is usually set 400 to 600. The importance weighitsf
each particle is estimated by the exponent projection oEthdidean distance between the
predicted points positions and the observation, whichdbelrepresented by:

. 1 1 .
V\'{:V_\&eXp(_EHX{_YtHlZ:) 9)

whereW = 5, exp(—7[|X{ — Y¢[|#) is the normalization term, angithe smooth term usu-

ally set to be 0.2. Note that the SVD used in subspace decatigposon’t break the order

of trajectories in matrix, so the points correspondencebenY; andX; can be ensured.
Then the tracking resuli; is represented by:

N . .
2= 3 wix (10)
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with the tracking error measured by:
1 2
erne = g llZe = Yill (11)

We use an iterative strategy to control the tracking errtw &level of under 0.5 pixel,
while it could be more than 1.0 pixels before iteration. Weetthex! corresponding to thx}
with the smallest distance ¥, as the initial state of next iteration, and sample particlitls
a smaller Gaussian variance (usually set to be half of thitsihiteration). The iterations
may be expected to be less than 3 according to our experimafies we gotZ;, we may
locate the object in current franteusing the points correspondence betwZen andZ;.
The typical method is to take the displacement of the objethe average displacements of
the points inZ¢, and the scale changing as the average of all the ratios beteverent point
distance and previous point distance for each pair of points

3.3 Updating Displacements Matrix

A tough problem in visual tracking is to deal with the chamgof object appearance with
time. As object moves, there is always part of the object appee disappearing and new
object area arising, which in our approach means the lostistieg object feature points and
the addition of new object feature points. The key is to findshud to discriminate whether
a newly detected point belongs to the object, or otherwisengs to the background. For-
tunately, this challenging problem can be easily solveth witr subspace motion model by
adopting the idea that, all feature trajectories of the ctbjathin the current frames patch
should lie on the same subspace. This means the rank of ghlacksnents matrix will re-
main unchanged when a new point added into the matrix belmntpe object, although the
specific singular values from SVD will be affected generally

Assume that we havé newly detected feature points spanning the current fraratehp
Let the displacements of one of these points be the columovet(u; ,v’j)T, i=1,....n.
We add each of these column vectors into the existing & displacements matri@%] asa
new column to obtain:

U7 ... Um uljl
/ /
[ U \L;,J } | Uk Uk \lejk (12)
Vo 2k (n+1) Vit .o V| Vi
Vik ... Vnk u/jk

Then the point will be considered as belongs to the objeciwvthe rank of the left matrix
in Equation (12) is the same to the rank[@ﬂ. So that the displacements matrix can be
replenished and updated. The rank number is detected bylamglues from SVD via the
same method introduced in Section 2.2.

4 Experiments

To examine the effectiveness of our proposed tracking nietve tested it on several chal-
lenge videos and do comparison with four other trackingritigms that represent the state of
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(c) Tracking result of our tracker on cube sequence (d) Tracking result of other trackers on cube sequence

e QU tracker LIAPG wmmmmm OAB s [VT s MIL

Figure 3: Experimental results comparison (1)

the art, including Real-time L1 Tracker (LLAPG3][ Multiple Instance Learning (MIL)7],
Online AdaBoost (OAB)11] and Incremental Visual Tracking (IVTYLp]. We get the source
code or the binaries from the authors with the same initialtfmns at the first frame in order
to be more comparative. The videage andsylv are collected from prior work?, 14]. We
also made our own sequencesmfbear, penholder andvehicle.

4.1 Qualitative Comparison

We compare our algorithm with other four trackers in five videquences. The first video
contains a toy undergoing lot of pose changes, as well as Blbmménance variation. Some
selected frames of our tracker and other trackers are shofigure 3 (a) and (b). The OAB
tracker first lost the target in frame 450. Our tracking apgtocan track through the whole
sequence well.

In the second video, a cube held by a hand is doing all sortetafion and the scale
of the object changed a lot too. In this sequence, all other fiacking approach failed
very quickly, the IVT tracker can not even work for 20 framé3ut our tracker based on
the subspace motion model can handle this sequence veryingdliding dealing with the
rotation and focal changing. The result images are selentddshown in Figure 3 (c) and
(d).

In the third video, a toy bear holding by a hand doing all kindgoses. The bear’s
appearance is irregular, and the projection area of thebinj¢ghe image is always in defor-
mation. There are many drifts happens for the other fouk&a@specially the MIL tracker
shown as the green color rectangle. Our tracking approacérisstable. Some selected
frames of our tracker and other trackers are shown in Fig(eg dnd (b).

In the fourth video, a static pen holder shot by a moving caméhere is a bulging area
in the front of the pen holder. Therefore, when the cameraamostatingly, our subspace
tracker has the advantage to deal with this situation. Sefeeted frames of our tracker and
other trackers are shown in Figure 4 (c) and (d).
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(e) Tracking result of our tracker on vehicle sequence (f) Tracking result of other trackers on vehicle sequence
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Figure 4: Experimental results comparison (2)

The last sequence (Figure 4 (e) and (f)) is a vehicle car sevgback to the parking lot.
The appearance of the vehicle varies large. Therefore ther tour trackers partly or fully
drift away, and only our subspace tracker can through thdendegjuence well.

4.2 Quantitative Comparison

For quantitative comparison, we label the ground truthtpmsof each frame manually. The

pixel-wise tracking errors, which are measured by the Eeelh distance from the center of
the target to the ground truth, are then calculated. Thdtseate shown in Table 1. The

errors are ideally zero. Compared with other methods, odhoageachieves smaller pixel-

wise tracking errors.

5 Conclusion

In this paper, we have proposed a novel motion model for Visaeking by using the sub-
space theory on the displacements matrix of a rigid objelis Subspace motion model is
capable to describe the image deformation brought by matioron-plane-like object as it
can reach to a point-to-point mapping of the object images Wodel also has the capabil-
ity to calculate dynamically and automatically the dimensility of PF state vector and the



10 WANG ET AL.: VISUAL TRACKING VIA SUBSPACE MOTION MODEL

sylv  cube toybear penholder vehicle
L1APG | 11.79 12.45 10.85 15.20 16.61

MIL 745 3641 17.85 18.61 8.19
OAB 10.79 39.04 12.02 18.13 6.45
VT 12.32 6142 1856 1410 18.61

Ours 455 419 7.48 15.72 5.23

Table 1: The pixel-wise tracking errors for different segees and tracking methods.

weights for each dimension, by taking advantage of the aadespank of the displacements
matrix and the singular value for each dimension. Therefloeeparticle distribution from
the PF process could cover the probable object motion stadesaccordantly. Based on this
subspace motion model, we derived a new visual tracking odktthat can nicely deal with
the appearance changing of the object by means of supaytigrnvariation of the subspace
rank. The feasibility of our approach bas been effectivedyndnstrated via comparative
experimental studies.
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