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An Interactive Interface for Causal Reasoning 
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Abstract—Uncovering the causal relations that exist among variables in multivariate datasets is one of the ultimate goals in data 

analytics. Causation is related to correlation but correlation does not imply causation. While a number of casual discovery 

algorithms have been devised that eliminate spurious correlations from a network, there are no guarantees that all of the inferred 

causations are indeed true. Hence, bringing a domain expert into the casual reasoning loop can be of great benefit in identifying 

erroneous casual relationships suggested by the discovery algorithm. To address this need we present the Visual Causal Analyst – 

a novel visual causal reasoning framework that allows users to apply their expertise, verify and edit causal links, and collaborate 

with the causal discovery algorithm to identify a valid causal network. Its interface consists of both an interactive 2D graph view and 

a numerical presentation of salient statistical parameters, such as regression coefficients, p-values, and others. Both help users in 

gaining a good understanding of the landscape of causal structures particularly when the number of variables is large. Our 

framework is also novel in that it can handle both numerical and categorical variables within one unified model and return plausible 

results.  We demonstrate its use via a set of case studies using multiple practical datasets. 

Index Terms—Visual knowledge discovery, Causality, Hypothesis testing, Visual evidence, High-dimensional data

 

1 INTRODUCTION  

Recovering the causal relations from purely observational data is one 
of the ultimate goals for data analysts and a fundamental problem in 
science. After decades of efforts by many, causality research gained 
particularly strong attention when Judea Pearl, a long time pioneer of 
the field, won the Turing award in 2011 for the underlying 
mathematical framework of causal inference. The advantage of 
knowing the causal relations rather than just statistical associations, 
e. g., correlations, is that the former enables explicit guidance in 
predicting the effects of actions perturbing the observed system. 

The most reliable way to determine causation is by controlled 
experiments. However, controlled experiments are often either 
impossible or associated with high cost and thus impractical in real 
world. A loose detour usually taken is trying to express causation by 
correlations calculated from observational data. One typical example 
of this is the website Google Correlate [1] which can provide visitors 
with endless hours of entertainment by entering any search term and 
then browsing a long list of spurious correlations the term has with 
either time or US states. But while users of Google can easily 
tolerate the many irrelevant links the search engine typically 
generates, for other applications, such as healthcare diagnosis and 
financial prediction, blindly inferring causation from spurious 
correlations can have severe consequences. 

To infer a precise model describing and measuring causal 
relations embedded in observational data, the theory of causal 
inference and analysis, started with the work of Pearl [2, 3], Spirts [4, 
5], and others, has become a hot topic in recent years. While many 
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modern causal discovery algorithms claim that they can generate 
causal models with enough accuracy, they usually hold very strong 
assumptions on data distributions (e.g. Multinomial, or continuous 
with Gaussian sample error) that are hard to keep in practice, and 
make algorithms unstable when error relations are generated in early 
stages. Thus none can guarantee an answer that is accurate in the 
sense of being completely consistent with the real world. Even with 
the emergence of big data the automated derivation of a consistent 
causal model remains challenging because it requires a fundamental 
theory of how and why the observed phenomena occur. This in turn 
requires creativity with the human expert in the inference process. 
This is feasible when the model is sufficiently small, that is, the 
number of variables in the model is manageable. However, big data 
not only increases the number of observations, it also typically gives 
access to a greatly increased number of variables. These can help 
users build a consistent theory of the real world phenomena but the 
process is difficult to manage without visual support. 

The system we describe in this paper, the Visual Causality 
Analyst, is a first step into creating such a visual support system. It 
offers various interactive and automatic tools for visual causal 
discovery. Following previous work on correlation maps [6] and 
Pearl’s depicting of the causality structure as a directed acyclic graph 
(DAG) [2, 3, 7] our framework visualizes the causal relations as an 
interactive spatial 2D layout, in which each edge connecting two 
variables implies a causal relation and the direction of an edge 
identifies the effect from the cause. Our interface also offers real 
time visual interactions where users are allowed to arbitrarily change 
the relations between variables and the impact of each modification 
is visualized simultaneously on the graph. Mathematical 
measurements of causal relations in the form of either linear 
regression analysis (targeting numeric variables) or logistic 
regression analysis (targeting categorical variables) are calculated 
and fed back along with the interactive operations, enabling users to 
explore potential causalities with statistical proof. Subsequently, 
these measurements are then also visualized in the spatial layout in 
terms of edge colors and opacities. 

The main utility for computational causal inference lies in the 
conditional independence (CI) test, which is usually conducted via 
G-test or partial correlation. The former applies to discrete 
(categorical) data, while the latter applies to continuous (numerical) 
variables. None can handle both. We choose the partial correlation 
approach since our motivating domain application has mostly 
numerical variables and discretizing numerical variables into bins 
causes loss of detail [8, 9] which is undesirable. To go the other way, 
we are inspired by recent work of Zhang et al. [6] which for each 
pair of categorical and numerical variables reorders and repositions 
the levels of the categorical variable such that Pearson’s correlation 
between the pair is optimized. To accommodate the computational 
causal inference process we extend Zhang’s level reordering and 
repositioning mechanism from a single numerical variable to sets of 
numerical variables. This global optimization mechanism enables the 
causal inference algorithms to return plausible results on datasets 
containing both continuous and discrete data. 

Our paper is structured as follows. Section 2 discusses related 
work. Section 3 introduces theoretical background and contributions. 
Section 4 introduces our novel Visual Causality Analyst interface. 
Case studies on multiple datasets are given in Section 5, and Section 
6 ends with conclusions and an outlook on future work. 

2 RELATED WORK  

As mentioned, causality has been an active research topic and 
research on the visualization of causal networks has also emerged. In 
the following we shall briefly review this work.  

2.1 Causality Visualization 

A number of methods have been developed for the visualization of 
causality. The Hasse diagram is one of the earliest systems that have 
the ability to represent causal relations. It was originally introduced 

in order theory and has been adopted for demonstrating distributed 
systems [10], parallel processes [11], and many other information 
structures that contain causal events. However, since Hasse diagrams 
typically produce layouts with a large amount of intersecting edges 
and lack the ability to represent causal semantics, it can be difficult 
to comprehend them, especially when the number of variables is 
large and causal relationships are complex. 

Growing-squares [12] and its enhancement growing-polygons 
[13] are both animated techniques that focus on visualizing sets of 
connected causal events called processes. The latter uses n-sided 
polygons to represent n processes and the gradual change of 
processes is visualized by animating the polygon’s change of size. 
However, the growing-polygons can only illustrate causality at the 
process level with very limited abilities of signifying causal relation 
strengths. Kadaba et al. [14] address these problems by depicting 
causal relations by node-link arrows and glyphs, leveraging simple 
animation of node sizes to indicate interactions between the factors 
and the target. While such a graph design can be effective for 
causality visualization, it only feeds back brief semantics of a causal 
relation, e.g. positive or negative. However, when explicit causal 
measurements need to be demonstrated on the graph, no existing 
causal visualization approach can give a plausible result. 
Wongsuphasawat and Gotz [15] describe a system that visualizes 
alternative pathway chains of temporal event sequences. While these 
chains suggest causal effects they are not casual networks. Also, 
their system focuses mainly on event flow visualization and has no 
support for interactive statistical causal reasoning. 

According to Pearl’s DAG patterns of causal structures [2], a 2D 
spatial graph layout of the network is a natural fit. Spatial graph 
layouts have been widely used in information visualization in various 
contexts. A related example is the visualization of Bayesian belief 
networks [16], in which the layout is guided by a temporal order, and 
multiple visual variables like color, node size, and proximity are 
used to represent network semantics. More recently, Zhang et al. [6] 
demonstrated an interactive correlation map with spatial 
representations. By ways of slider bars, users can filter edges 
corresponding to weak relations. Our work is inspired by these 
methods and we extend them for the visualization of causal relations, 
providing a suite of interactive utilities to manipulate the graph. 

2.2 Causality Representation and Inference 

Our framework provides automatic discovery of causalities in the 
data, thus causality representation and inference algorithms are 
closely related to our work. The causality system is often represented 
as Bayesian Networks (BN) [17, 18], in which causal relations are 
represented as dependencies measured by conditional probabilities. 
Algorithms recognizing BN structures usually require knowledge of 
the data distributions, which is difficult to achieve in practice 
especially with continuous data. For this type of data, Structural 
Causal Models [3, 2, 7, 19] which assume effects are linear functions 
of their causes plus Gaussian noise are better suited. The structure of 
this model is typically built via a multi-phase process involving a 
number of CI tests using partial correlations [20, 21, 22, 4]. 
Unfortunately, these algorithms often fail when categorical variables 
are included in the data. Introducing dummy variables is a standard 
technique in statistics [23], but the resulting significant increase in 
the number of variables may lead to an exponential increase in the 
number of CI tests needed, and also the mutual exclusions among 
dummies from the same variable can be very difficult to guarantee. 

For the purpose of handling both categorical and numerical 
variables in a correlation network, Zhang et al. [6] recently proposed 
an algorithm that uses a pairwise optimization approach to reorder 
and reposition the levels of each categorical variable with respect to 
each numerical variable. The new levels are computed by 
maximizing Pearson’s correlation with the pair’s numerical variable. 
This approach is superior to other encoding methods like [24, 25] in 
that it provides both reordered and optimized distances between 
categories. However, in contrast to correlation networks, causal 
inference requires a global frame and so the algorithm proposed by 
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Zhang et al. is not directly applicable. But it served as an inspiration 
for the global optimization approach we developed which computes 
the new level values of a categorical variable with respect to all 
numerical variables in the system. 

3 THEORETICAL BACKGROUND AND CONTRIBUTIONS  

Our causality analysis framework comprises the following three 

steps: (1) find all true CI relations embedded in the observational 

data (see Section 3.1), (2) build a DAG that is consistent (termed 

faithful) to all of these conditions (see Section 3.2), and (3) compute 

the causal strengths of the relations coded by the DAG (see Section 

3.4). Steps 1 and 2 make use of correlation analysis where we require 

a novel transformation of categorical to numerical variables which 

we introduce in Section 3.3. Conversely, step 3 uses dedicated 

regression analyses where no such transformation is needed. Our 

treatment of steps 1-3 is necessarily brief and the reader is referred to 

the tutorials by Pearl [7] and Spirtes [26] for more detail. 

3.1 Causality Analysis and CI Test 

The idea of causality analysis is based on counterfactual theory, 

which can be explained in terms of the form “If A had not occurred, 

B would not have occurred”. Although counter facts cannot be 

treated equally as causation on a philosophical level [27], causality 

analysis serves uniquely in telling us how a distribution would differ 

if external conditions were changed by treatments or interventions 

[7]. To achieve such functionality, CI tests are used as core 

instruments. The goal of a CI test is to find out whether two variables 

are related when the rest of the system is controlled, i.e., test the 

dependency of two variables while eliminating the impact of all 

other variables or at least a subset of them. This can be interpreted as 

a simulation of a controlled experiment on observed data.  
In statistics, for some variables 𝑋 and 𝑌 in a numerical dataset, a 

CI test is equivalent to a test for zero partial correlations between 𝑋 
and 𝑌 given a set of other variables 𝒁 in the dataset. This is called 
conditioning on 𝒁 [2, 3]. The partial correlation between 𝑋  and 𝑌 
given 𝒁 is defined as the correlation of the residuals from regressions 
of 𝑋 on 𝒁 and of 𝑌 on 𝒁. In a dataset, the partial correlations from 
each pair of variables conditioned on all remaining variables form a 
partial correlation matrix. Such a matrix can be efficiently computed 
based on the correlation matrix 𝐑, so that with 𝐑−𝟏 = (𝑟𝑖𝑗), we have 

                                        𝜌𝑋𝑖𝑋𝑗∙𝑽\{𝑋𝑖𝑋𝑗} = −
𝑟𝑖𝑗

√𝑟𝑖𝑖𝑟𝑗𝑗
                               (1) 

where  𝑋𝑖  and 𝑋𝑗  are two variables, and 𝜌𝑋𝑖𝑋𝑗∙𝑽\{𝑋𝑖𝑋𝑗}  is the partial 
correlation of  𝑋𝑖  and 𝑋𝑗 given all other variables in the dataset. Then 
with the partial correlation matrix, we are able to find all potential 
causal relations. This process as a whole is often called feature 
extraction, which is the first step in many causal discovery 
algorithms [22, 20, 28]. 

However, variables actually independent to each other may still 

be found causally related when conditioned on certain variables. 

Suppose a graduate school admits students only by the sum of one’s 

GPA and personal statement score. We may find these two scores 

negatively correlated within those who are admitted, as high GPA 

with low statement score or low GPA with high statement score is 

just enough for being admitted. But there is no apparent causal 

relation between the two scores in the real world. This means some 

variables (admission status in this example) cannot be conditioned on 

in finding the true CI relations between two variables. Such variables 

are called colliders and their descendants, and conditioning on them 

will generate false causations and introduce triangle patterns. The 

right set of variables to be conditioned on so that two variables can 

be deemed having a CI relation is called d-separating set. If no such 

set can be found in the dataset for a pair of variables, we can infer 

there is direct causation between them. All terms refer to [2]. 

3.2 Causal Graph and Inference 

The goal of causality analysis is to build a causal graph that is 
faithful to all the CI relations embedded in the observational data. A 
causal graph 𝑮 = (𝑽, 𝑬) is a DAG that consists of a set of vertices 𝑽 
denoting the variables and a set of directed edges 𝑬 denoting the 
causal relations between two variables. Assuming there is no latent 
variable, the basic graph pattern of the causal relations among any 
three observed variables related to each other are: (1) a chain of 
causal influences (Fig. 2a), (2) a common cause influencing multiple 
variables (confounding, Fig. 2b), or (3) a common effect caused by 
multiple variables (selection bias, Fig. 2c). The first two patterns 
imply the same conditional independency which is “A is independent 
of B conditioning on C”. But the third pattern, also called the V-
structure, is different as C is just the collider of A and B as 
mentioned in the previous subsection, thus the true independency of 
A and B can be recognized only when C is NOT conditioned on.  

However, in feature extraction we simply conditioned on all other 
variables and no causal relations are oriented, thus patterns as Fig. 2c 
would become an undirected triangle, and patterns in Fig. 2a and b 
would look the same. The resulting undirected graph is often called a 
Markov field or a moral graph depending on the author. 

How to remove false links and orient the edges correctly is one of 
the major issues in modern causal inference researches. The usual 
procedure is to look at each pair of connected variables and conduct 
a subset search for colliders in variables forming triangles with them. 
If colliders are found then the two variables are disconnected and V-
structures are recognized. This process costs a number of CI tests 
exponential to the number of variables forming triangles with each 
variable pair in the undirected graph. This is where the main 
computation cost lies. After all triangles have been processed a 
constraint propagation algorithm is run and a maximally but often 
partially oriented DAG is obtained [2, 4]. 

It is worth noting that partially oriented graphs returned by such a 
causal inference process only represent observationally equivalent 
classes [2] of true causal graphs, as there may be multiple DAG 
corresponding to the same set of CI relations. Expressed formally, 
for the generated 𝑮 and some variables 𝑋, 𝑌 and Z in 𝑮, 

𝑋, 𝑌 adjacent in 𝑮 ⟺ 𝑋 → 𝑌 or 𝑌 → 𝑋 in reality 
                      𝑋 → 𝑍 ← 𝑌 in 𝑮 ⟺ 𝑋 → 𝑍 ← 𝑌  in reality                   (2) 

This means that we will always need further verification to obtain 
the perfect causal graph in practice. Our system is purposed to help 
analysts in this verification task, using visualization to allow them to 
maintain their bearings on all levels of scale. 

3.3 Correlations of Categorical & Numerical Variables 

To efficiently compute the partial correlation matrix for the CI tests, 
we need to calculate a correlation matrix first. While correlations 
between pairs of numerical variables and pairs of categorical 
variables can be achieved accordingly with Pearson’s correlation 
coefficient and Cramer’s V, traditional methods applicable for 
correlations between numerical and categorical variables, e.g.t-test, 
ANOVA, and MANOVA, have the problem that they are not 
normalized, so that one must consult significance tables to measure 

Fig. 2. Three basic patterns of causal relations among any tree 
observed variables related to each other: (a) a chain of causal 
relations from A to B via C; (b) a common cause C influencing both A 
and B; (c) a common effect caused by both A and B. 
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the association between two variables. However, the ability to handle 
mixed types of variables is often required in practical applications. 
Our solution to this problem makes use of Zhang et al.’s approach 
[6] which returns a maximized Pearson’s correlation between a pair 
of numerical and categorical variables using the following equation: 

                                               𝑣𝑐
𝑖(𝑗) = 𝜇(𝑣𝑖(𝑗))                                         (3) 

Here, 𝑣𝑐
𝑖(𝑗) is the value assigned to level 𝑗 of categorical variable 𝑣𝑐 

regarding to numerical variable 𝑣𝑖 and 𝜇(𝑣𝑖(𝑗)) is the average of 𝑣𝑖 
corresponding to level 𝑗 of 𝑣𝑐. This will bring an optimized ordering 
and distances of 𝑣𝑐’s levels regarding 𝑣𝑖. 

This method, however, is only partially useful for casual analysis 
because the level ordering and adjustment for a given categorical 
variable will be different for each numerical variable. This is fine for 
correlation analysis but causal reasoning requires global consistence 
of variable values in all CI tests. In the following we describe a novel 
generalization of the scheme of Zhang et al. that can achieve this. 

An ideal globally consistent value mapping should be such that 
correlations between the categorical and all numerical variables are 
simultaneously maximized. A naïve idea would be to simply mediate 
all pairwise optimized values mapped from each numerical variable, 
setting up the target equation as, 

                             𝑎𝑟𝑔 min
𝑣𝑐

𝑜𝑝𝑡
∑ ∑‖𝑣𝑐

𝑜𝑝𝑡(𝑗) − 𝑣𝑐
𝑖(𝑗)‖

𝐹

𝐿

𝑗=1

𝐷

𝑖=1

                        (4) 

in which we suppose there is a categorical variable 𝑣𝑐 with 𝐿 levels 

and 𝐷 numerical variables 𝑣𝑖 , i = {1, 2, … , 𝐷} in the dataset. 𝑣𝑐
𝑜𝑝𝑡(𝑗) 

is the global optimized value we require for level 𝑗 of 𝑣𝑐, and 𝑣𝑐
𝑖(𝑗) is 

the pairwise optimized value for level 𝑗  with regards to numeric 

variable 𝑣𝑖. 

However, with the empirical knowledge that strong causal 
relations typically lead to strong correlations (although this is not 
true reversely), the values of 𝑣𝑐 ’s levels should more depend on 
numerical variables that are strongly correlated with it, but less on 
those are weakly correlated with it. This can be easily implemented 
by weighting the inner summation of equation (4) with the pairwise 
optimized correlation between 𝑣𝑐 and 𝑣𝑖, namely 𝜌𝑖. 

If two orderings of 𝑣𝑐’s levels regarding two different numerical 
variables 𝑣𝑝 and 𝑣𝑞 are just opposite to each other, solving equation 
(4) will result in that all 𝑣𝑐’s levels have similar values. The solution 
is to reverse one of two orderings so that the two become identical. 
This is equivalent to changing the sign of its pairwise optimized 
correlation weighting the inner summation. The mechanism to decide 
whether a level ordering should be reversed can be achieved by 
testing the sign of a correlation of orderings measurement, in which 
we consider 𝑣𝑐 ’s level ordering 𝝀𝑐,𝑝  regarding to 𝑣𝑝  as a standard, 
then reverse the ordering 𝝀𝑐,𝑞 with regards to 𝑣𝑞 when the correlation 
of 𝝀𝑐,𝑝 and 𝝀𝑐,𝑞 is negative. The selection of 𝑣𝑝 can be the one with 

largest pairwise correlation with 𝑣𝑐, call it 𝑣𝑀𝐴𝑋. Let Θ(𝑣𝑝, 𝑣𝑞) be the 
decision function representing the process and 𝜌(𝒙, 𝒚)  be the 
correlation function, then, 

                            Θ(𝑣𝑖 , 𝑣𝑀𝐴𝑋) = 𝑠𝑖𝑔𝑛 (𝜌(𝝀𝑐,𝑖 , 𝝀𝑐,𝑚𝑎𝑥))                     (5) 

We are now ready to put together the final target equation, using 
Θ(𝑣𝑝, 𝑣𝑞) and 𝜌𝑖  as weights in the outer summation of equation (4): 

                          𝑎𝑟𝑔 min
𝑣𝑐

𝑜𝑝𝑡
∑ Θ𝑖𝜌𝑖 ∑‖𝑣𝑐

𝑜𝑝𝑡(𝑗) − 𝑣𝑐
𝑖(𝑗)‖

𝐹

𝐿

𝑗=1

𝐷

𝑖=1

                  (6) 

Here we use Θ𝑖 to denote Θ(𝑣𝑖 , 𝑣𝑀𝐴𝑋) for convenience 
We found that satisfactory results can be achieved when 𝐹 = 2. 

Then by making (6) equal to 0 and differentiating on 𝑣𝑐
𝑜𝑝𝑡(𝑗), we can 

solve the optimization problem and obtain a closed formula, 

                                    𝑣𝑐
𝑜𝑝𝑡(𝑗) =

∑ Θ𝑖𝜌𝑖𝑣𝑐
𝑖(𝑗)𝐷

𝑖=1

∑ Θ𝑖𝜌𝑖
𝐷
𝑖=1

                                   (7) 

As ∑ Θ𝑖𝜌𝑖
𝐷
𝑖=1  only serves as a normalization factor, also 

combining equation (3) we obtain, 

                                   𝑣𝑐
𝑜𝑝𝑡(𝑗) ∝ ∑ Θ𝑖𝜌𝑖𝜇(𝑣𝑖(𝑗))

𝐷

𝑖=1

                                 (8) 

With equation (8), we can now assign numerical values to 𝑣𝑐’s 
levels, which can be used consistently in causal inference processes. 

Fig. 3a illustrates how this global optimization performs for the 
auto MPG dataset [29] (𝐷 = 7, 392 data points). In the table, the 
first column gives the variable pairs, in which origin is a categorical 
variable and all others are numerical variables. The second column 
shows the correlation using Zhang et al.’s pairwise optimized 
assignment for each level of origin. The third column shows the 
(similar) correlations obtained with our global optimization method. 
For the last two variable pairs, the different sign of global from 
pairwise correlation means that the level ordering is just the opposite. 
Fig. 3b and c show two parallel coordinate tiles before and after the 
transformation, respectively. We observe that after the 
transformation, (1) categories (levels) that behave similarly are put 
close to each other; and (2) the correlation is more visible in the 
parallel coordinate plots. 

3.4 Regression Analysis 

After the structure of the causal graph model has been recovered, we 
need tools to model, measure, and test the causal relations 
statistically. In Pearl’s theory of Structural Causal Models [3, 2, 7], 
linear regressions are used as such tools. Linear regression measures 
the linear relationships between a dependent variable 𝑦 and one or 
more explanatory variables 𝑥𝑘 , 𝑘 = {1, 2, … , 𝐾}, taking the form 

Variable pair 

categorical/numerical 

Pair-Opt 

Correlation 

Global-Opt 

Correlation 

origin/horsepower 0.488 0.476 

origin/weight 0.595 0.561 

origin/displacement 0.656 0.637 

origin/mpg 0.576 -0.530 

origin/timeTo60mph 0.272 -0.272 

 

(a) 

Fig. 3. Effects of global optimization on the categorical variable origin from the auto MPG dataset [29]. (a) Comparisons between correlations of 
origin and several numerical variables under pairwise optimization and global optimization. The correlation value are similar in scale under two 
value mapping approaches. The different signs of correlations in the last two rows mean the level ordering after global value mapping is just the 
opposite to that after pairwise value mapping. (b) The parallel coordinate view of mpg, origin, and weight before global value mapping. (c) The 
parallel coordinate view of mpg, origin, and weight after global value mapping. We can see that both ordering and distances between categories 
are optimized, so that correlation is more visible than that in (b). 
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                          𝑦𝑖 =  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝐾𝑥𝐾𝑖 + 𝜀𝑖                       (9) 

In this equation, the subscript 𝑖 indicates the 𝑖-th observation and 𝜀𝑖 
represents the intercept, which is interpreted as causal effects from 
latent factors (e.g. unobserved variables, sampling noise) in causality 
theory; 𝛽𝑘 is the regression coefficient for 𝑥𝑘, which is also taken as 
the main measurement of causal strength. If 𝑥𝑘  is a 𝐿  level 
categorical variable, it is turned into 𝐿 − 1 binary dummy variables, 
each standing for a level of 𝑥𝑘. Linear regression analysis can test the 
statistical significance of each explanatory variable via student’s t-
test, as well as test the goodness of fit of the whole model via F-test, 
R-squared coefficients, and many other statistical utilities. 

Our framework uses logistic regression analysis to measure 
causal relations targeting categorical variables. Logistic regression 
analysis, although named “regression”, is actually a model of 
classification probabilities, i.e. the probability of the categorical 
variable taking a certain level. It is a better fit than linear regression 
analysis in models targeting categorical variables. It takes the form 
of a logistic function as: 

                                         𝜎(𝑡) =  
1

1 + 𝑒−𝑡 , 

              where 𝑡 =  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝐾𝑥𝐾𝑖 + 𝜀𝑖                     (10) 

in which 𝛽𝑘 is the structural coefficient for 𝑥𝑘 and measurement of 
causal strength, with error term 𝜀𝑖 representing the disturbance from 
latent factors. If 𝑥𝑘 is a categorical variable with 𝐿 levels, it is turned 
into 𝐿 − 1 dummy variables. Logistic regression analysis can also 
test for variable significances (via Wald statistics) and for goodness 
of fit (via deviance, likelihood ratio tests, and so on). Note here the 
optimized values of categorical variables are not used in either 
regression analyses, but only in causal structure inference processes. 

4 THE V ISUAL CAUSALITY ANALYST 

In the following we use the Auto MPG dataset [29] to illustrate our 
interface and the interactions we defined on it. This dataset has eight 
variables – one of them categorical (origin) – and 392 instances. Fig. 
1 shows all elements of our interface. The main window contains the 
2D spatial layout of the causal graph in the center and the regression 
analysis view on the right. The variable type window on the left 
opens when a new dataset is read in, allowing the user to indicate 
which of the variables are numerical and which are categorical.  

4.1 The Causal Graph Display 

The causal graph is generated by the causal inference algorithm 

described in Section 3, using our global value mapping scheme for 

the categorical variables. The causal graph display provides an 

overview of all data dimensions in terms of their causal relations in 

variable space. In this display the vertices correspond to variables, 

laid out via a Fruchterman-Reingold force-directed model [30]. We 

set all edges to have the same natural strength so that vertices are 

uniformly spread on the canvas. The color of a vertex encodes the 

type of variable, blue for numerical and yellow for categorical. We 

use a different color for categorical variables since they will usually 

turn into dummy variables for the regression analysis. As such, each 

yellow vertex in the graph may correspond to multiple variables used 

in several regression analyses.  

The edges of the graph link two variables in terms of their causal 

relationships. The direction icon on an edge encodes the direction of 

the causal relation, going from cause to effect. The colors of the 

direction icon encode the type of the causal relation. Green arrows 

encode positive relations, red arrows encode negative relations, and a 

yellow arrow emanating from a categorical variable corresponds to 

multiple relations between the target and dummies of the categorical 

variable. If the target variable is a categorical variable, the arrow will 

be yellow too. The reason to use yellow arrows is that complex 

causal relation involving categorical variables cannot be simply 

described as negative or positive. 

The opacity of the edge encodes the amount of change that is 

exerted by the cause onto the effect, which is measured by regression 

coefficients. A more visible edge has a stronger effect. However, 

edges with too low opacities are often difficult to observe on the 

graph. Thus gamma correction is introduced such that for an edge 

connecting variable  𝑣𝑖  and  𝑣𝑖  with regression coefficient  𝛽𝑖𝑗 , its 

opacity 𝑅𝑖𝑗 is 

                                               𝑅𝑖𝑗 =
| 𝛽𝑖𝑗|

𝛾
+ 𝛿

𝐷
                                      (11) 

where 𝐷 is the normalizer to make all opacities lie in the range of 
[0, 1] , 𝛾  is the gamma value, and 𝛿  is the offset to guarantee 

minimum opacity. Usually we set 𝛾 = 0.8 and 𝛿 = 0.1 to avoid an 

edge to be rendered too weak to be observed, and at the same time 

rendering a strong edge evidently darker than a weak edge.  

Below the graph in Fig. 1 is a control panel that allows users to 

run the causal inference algorithm – via the causal layout button – as 

well as add edges, give them cause-effect directions, and test these in 

the regression analysis after which a re-layout of the casual graph 

might be run. Slider bars allow the user to either filter away or 

enhance the opacity of weak edges. There is also a button to load 

new data which pops up the specification window on the left. 

4.2 The Regression Analysis View 

When a variable is selected the system computes the regression 
model for all variables with incoming casual edges to it. In statistics, 
the former variable is often called the response variable, while the 
latter are the predictor variables. The regression analysis view shows 
the regression coefficient for each predictor variable as well as the p-
value to give an indication of. The fit of the overall model can be 
gauged by the R-square metric. It is 1.0 when the regression model 
fit perfectly. The R-square metric gains in meaning especially when 
it is used to compare regression models. If R-square decreases 
significantly when a predictor variable is dropped from the model 
then there is a good chance that this variable was required. Another 
test statistics our system reports is the F-value gauged by the F-
statistics. The F-statistics is also particularly useful for comparing 
two competing models. We can write 

                             𝐹 = (
𝑆𝑆𝐸1 − 𝑆𝑆𝐸2

𝑆𝑆𝐸2
) (

𝐷𝐹1 − 𝐷𝐹2

𝐷𝐹2
)⁄                      (12) 

where 𝑆𝑆𝐸 is the residual sum-of-squares (RSS) of a model and 𝐷𝐹 
is its degrees of freedom which is the number of observations minus 
the number of predictors minus 1. Let’s assume that 𝑆𝑆𝐸1 is the RSS 
for the model with fewer predictor variables. Assume 𝑆𝑆𝐸1 is higher 
than 𝑆𝑆𝐸2 which is the RSS of the model with more predictors, and 
𝐷𝐹1 is higher than 𝐷𝐹2 since there are fewer predictors. Now, If the 
more complicated model is correct, we can expect the relative 
increase in RSS (going from the complicated to the simple model) to 
be greater than the relative increase in the degrees of freedom, or 
(𝑆𝑆𝐸1 − 𝑆𝑆𝐸2) 𝑆𝑆𝐸2⁄ > (𝐷𝐹1 − 𝐷𝐹2) 𝐷𝐹2⁄ . The significance of this 
increase can be tested via the F-statistics, but even informally, when 
𝐹 is large when a predictor variable is included in the model, we 
know that this predictor was valuable. 

4.3 Illustrative Example #1 

In the graph of Fig. 1 the user has selected a few edges to highlight 

the causal flow they are part of. For example, the user marked all 

edges that link the miles per gallon (mpg) rating of a car to the 

factors that might cause this rating (and the physical process behind 

it). These factors are weight, origin, and model_year. The regression 

analysis window gives the statistical measurements and proofs for 

the identified causal models by means of linear regression and 

logistic regression analyses. Here we learn that weight has a strong 

negative effect (the regression coefficient is -0.647), while the effects 

of the other factors are rather mild. All but one effect is statistically 

significant – their p-values are less than 0.05.   
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4.4 Interaction with the Causal Graph Interface 

It is often the case that true causalities may be missing or are wrong 
in a causal graph built from observational data. For this reason 
further verifications (hypothesis tests) on identified causal 
relationships are always needed. These verifications usually require 
modification of the causal graph by means of connecting two 
vertices and assigning the causal direction, reversing the direction of 
an edge, deleting an edge, or marking an edge as unknown (of 
direction). Furthermore, especially in the presence of large causal 
graphs, users will wish to focus on certain variables and their casual 
relationships while hiding all others.  

Our causal inference interface provides interactive utilities 
capable to perform all of the above functions with visual feedback. 
That is to say, whenever the causal graph is modified, the impact of 
the modification on the rest of the graph, e.g. direction icon colors 
and edge opacities, will be updated immediately. Vertices of 
variables of interest can be selected either in the graph or by marking 
them in the variable list. Edge selection is achieved by either clicking 
on them in the graph view or choosing them in the control panel. We 
note, however, that any deselected (hidden) variable should still be 
taken into consideration in the causal structure learning process as 
we need to condition on them in CI tests. If hidden variables are not 
considered then erroneous causal relationships might be inferred. 
This is similar to the case when important variables have not even 
been observed. In both cases our visual interface provides a helpful 
medium for human experts to recognize these false relationships and 
seek their resolution.  

Causality is subtle, and to test and measure it, we make use of the 
statistics and regression analyses tools described in Sections 3.4 and 
4.2. We show the results of these analyses, such as coefficients and 
others in the regression analysis view whenever a causal graph is 
generated. The analysis view also provides automatic update on the 
analysis results whenever the graph is modified by the user. Finally, 
if an edge on the graph is selected, all regression analysis results 
involving it will be highlighted to made salient for the user. 

4.5 Illustrative Example #2 

Fig. 4a shows another example for the Auto MPG dataset. Here, the 
user has decided to focus on the causal graph of weight, horsepower, 
and timeTo60mph, hiding all other variables and relationships. The 
graph implies that a light car with high horsepower tends to have 
short acceleration time, which is consistent with real world 
knowledge. However, we also see in the graph that high horsepower 
increases weight which would bring down timeTo60mph. To research 
this conflict we delete the edge from horsepower to timeTo60mph 
and observe (in Fig. 4b) that weight and timeTo60mph are now 
negatively related (the visualization updated accordingly). A visual 
indicator is that the edge opacity dropped compared to the opacity in 
Fig. 4a. This new relationship is inconsistent with common 
knowledge and it likely means that only considering weight cannot 
explain acceleration well. To explore this argument more deeply, a 
detailed statistical proof is needed. This proof can be provided by the 
regression analysis view of our framework. 

Fig. 4c and d are two screen shots of the regression analysis view 
showing linear models of timeTo60mph, corresponding to the graph 
models in Figs. 4a and b, generated and updated automatically. We 
observe from Fig. 4c that when taking both horsepower and weight 
as causes, horsepower plays a much greater role (with regression 
coefficient -1.049) in effecting timeTo60mph than weight (with 
regression coefficient 0.632). When only regressing on weight, its 
regression coefficient is indeed negative (-0.343, Fig. 2d). However, 
the R-square coefficient in Fig. 4d is only 0.161, which is much 
lower than that in Fig. 4c where it was 0.622. This means that the 
linear model described in Fig. 4d is much worse than that in Fig. 4c, 
and we verified our previous guess that only considering weight will 
not explain acceleration well. Likewise the F-value drops by a large 
amount which also indicates that horsepower is a significant casual 
variable should not be dismissed. 

We learn from this investigation that horsepower is indeed a 
good predictor for acceleration and that the apparent conflict due to 
the positive causal link between horsepower and weight might be 
related to the weight variable and not timeTo60mph. So we would 
continue our investigation there (see Section 5.1). 

5 CASE STUDIES  

We demonstrate our framework with the following three datasets, the 
first of which we have already used in the previous example.  

Auto MPG dataset: This dataset contains 392 complete records 
of cars with 8 attributes: mpg, cylinders, displacement, horsepower, 
weight, timeTo60mph, model_ year, and origin, in which origin is a 
three-category nominal variable and all other variables are 
continuous. All car models in the dataset use gasoline and were built 
before 1983. This dataset was retrieved from the UCI Machine 
Learning Repository [29]. 

Sales campaign dataset: The dataset has been synthesized based 
on actual data describing the sales marketing and its effects on a 
company’s financials. There are 600 data samples each representing 
one salesperson, and 10 numeric variables: %Completed, #Leads, 
LeadsWon, #Opportunity, PipeRevn (pipeline revenue), ExpectROI 
(Return on Investment), Cost, Cost/WonLead, PlanRev (planned 
revenue), and planROI. This data set was previously adopted for 
demonstrating the correlation map by Zhang et al. in [6]. We can 
now make more explicit decisions by ways of causality analysis with 
our new interface. 

Heart disease Dataset: This is a realistic dataset on heart disease 
diagnosis, retrieved from the UCI Machine Learning Repository 
[29]. The dataset has 270 diagnosis records, each per person, with 7 
categorical variables: sex, chestPainType, fastBloodSuger, restECD 
(electrocardiographic), angina, thalassemia, and disease; and 6 
numeric attributes: bloodPressure, serumChol (Cholestoral), 
maxHeartRate, exerST(ST depression induced by exercise), 
slopeExerST, and numVessels (colored by flourosopy). 

Fig. 4. The visual feedback and statistical analysis provided by the 
Visual Causality Analyst. (a) A visualized causal graph structure of 
variable weight, horsepower, and timeTo60mpg from the auto MPG 
dataset, generated by our framework. (b) The visual feedback after 
deleting the edge from horsepower to timeTo60mpg. Here weight 
becomes a negative cause of timeTo60mpg, which is inconsistent with 
common knowledge. (c) A screen shot of linear regression analysis 
targeting timeTo60mpg in line with the causal model of (a). (d) A 
screen shot of linear regression analysis targeting timeTo60mpg in 
line with the causal model of (b). Comparing (c) and (d) we can see 
that only regressing on weight cannot explain timeTo60mpg well, due 
to the dropping of R-and F-Test value from (c) to (d). 
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5.1 Causality Analysis: Auto MPG Dataset 

We firstly present the basic concepts of our Visual Causality Analyst 
interface with the auto MPG dataset. Fig. 5a gives an initial casual 
graph generated by randomly assigning values to levels of origin. 
We see here that horsepower is mistakenly drawn as the positive 
cause of cylinders and displacement. It is common knowledge that 
these two edges should at least be reversed. The reason for such 
errors is typical. The feature extraction found an undirected edge 
between horsepower and origin with origin’s random level values, 
then cancelled it in the d-separating set search and directed the causal 
relation as horsepowe→ displacement and origin→ displacement. 
This error then spread in later processes and affected the direction 
between horsepower-cylinders. 

A better causal graph is shown in Fig. 5b, which is generated by 
using globally optimized level values of origin. Now we can see that 
all causal relations between horsepower, cylinders and displacement 
are correct. We also found that the categorical variable origin plays a 
weak (low edge opacity) cause of displacement and mpg. As origin 
will turn into dummy variables, it is represented by a yellow vertex. 
Also the arrows on edges leaving from origin are colored yellow as 
each denotes multiple coefficients. Fig. 5c shows an enhanced causal 
graph after setting the regression coefficient threshold to 0.4. All 
weak causal relations are filtered away. We now observe that origin 
and model_year are independent of all other variables, and the direct 
relation between horsepower and weight has also been eliminated. 

Our original purpose for this dataset was to predict car mpg and 
find the direct and indirect causes for it. Fig. 5c suggests that 
timeTo60mph and horsepower are not related to mpg since there is 
no causal edge pointing to it. Thus we may unselect them and only 
lay out those variables that have strong direct or indirect causal 
relations with mpg. Having done this we obtain the causal graph of 

Fig. 5d, which is a chain of causal relations with four variables. Fig. 
5h shows the parallel coordinates plot of these variables in the order 
of the causal chain. We can clearly observe a flow of associations 
from cylinders to mpg.  

This chain is consistent with the mechanics of cars, at least when 
it comes to cars captured in this dataset. Adding cylinders to such a 
car increases its displacement, but not the other way around since we 
can also increase displacement by adding volume to the current set of 
cylinders. More displacement (and the power it affords) requires a 
heavier car for stability. But moving the extra weight around requires 
more gasoline, decreasing mpg.     

5.1.1 Interactive exploration of causal relationships 

One may want to further explore the potential causal relationships 
that are not suggested by the graph in Fig. 5b. This can also be easily 
achieved with the interactive tools provided by our framework. 

For example, the causal graph did not draw direct edges between 
displacement and mpg. However, we might wish to test the 
hypothesis if this causal relation actually exists. To do this, we can 
simply select the pair of variables as cause and effect, respectively, 
in the control panel and assign the edge. The resulting causal graph is 
shown in Fig. 5e, with the added edge highlighted. Colors and 
opacities of other edges on the graph may change accordingly if the 
causal relations they represent are affected by such operation.  

To determine whether this causal relation holds, we need to refer 
to statistical analyses. Two screen shots of the linear regression 
analyses results before and after adding the edge are shown in Fig. 5f 
and g. Since the p-value of displacement from the student t-test is too 
large (p = 0.339) in Fig. 5g, together with the dropping of F-value, 
the direct causal relation between displacement and mpg should not 
be considered as existing. Hence there is no direct relationship 
between displacement and mpg. Raising the displacement of a car 

Fig. 5. Causal reasoning on auto MPG dataset with the Visual Causality Analyst. (a) The causal graph generated by randomly assigning values 
to origin’s categories, which introduces several error edges. (b) The causal graph generated by assigning globally optimized values to origin’s 
categories. (c) The graph with regression coefficient threshold of 0.4. Weak causal relations are filtered away. (d) The graph relevant to mpg, 
which is a chain of causal relationships from cylinders to mpg. (e) The causal graph in which an edge from displacement to mpg is added and 
highlighted. (f) A screen shot of linear regression analysis on mpg without displacement. (g) A screen shot of linear regression analysis on mpg 
with displacement. We see that displacement has a large p-value in (g), also the F-Test in (g) is decreased from that in (f), so displacement 
should not be considered as a direct cause of mpg. (h) The parallel coordinate view of the variables related to mpg, in the order consistent to the 
causal relationships represented in (d). A clear flow of data variable relations can be observed. 
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usually will not directly lead to the decrease of its mpg. But when 
displacement increases, usually the car will be heavier (as mentioned 
before), which causes the mpg to reduce, since weight negatively 
changes mpg. In this case, weight serves as a mediator variable 
completing the chain of displacement and mpg.   

Many more conclusions can be drawn and many more 
explorations can be done from this single causality visualization. 
Therefore we believe our Visual Causality Analyst is powerful and 
effective for casual reasoning explorations, and the graphs in Fig. 5 
may potentially be helpful for consumers to select cars, as well as for 
car manufacturers to balance their offering of models. 

5.2 Strategizing: Sales Campaign Dataset 

In this example, we use the Sales Campaign dataset to show how 
business executives may analyze sales behaviors and strategize with 
our Visual Causality Analyst software. 

To give some background, a sales pipeline typically starts with a 
lead generator responsible for developing prospective customers 
called leads with whom salespersons may actually close deals. Leads 
may become won leads when they give positive feedback and then 
opportunities when they offer further interests. For each won leads, 
an increased sales pitch at cost per won lead (cost/WL) will be 
invested. The goal of the entire sales effort is to increase the 
expected return on investment (ExpectROI), and ultimately 
maximize pipeline revenue (PipeRevn). In [6] a correlation map was 
used on the same dataset to showcase its features. In the following, 

we will demonstrate that by upgrading to the Visual Causality 
Analyst, the decision making process becomes even more explicit.  

Suppose a team of sales data analysts in the company are busy 
analyzing the sales strategy for the following year, basing on last 
years’ data from their sales teams. Their first step is to build the 
causal graph of all data attributes to get an overview on how their 
sales system actually functions. This process is straightforward – 
import the data with an Excel spreadsheet and lay out the initial 
causal graph shown in Fig. 6a.  

5.2.1 Strategy development 

After drawing the sales system’s causal graph, the analysts proceed 

in developing effective business strategies using our interface. 

To achieve the goal of increasing the pipeline revenue, the 

analysts first filter out weak relations in the graph and select a series 

of related causal relations, highlighted in Fig. 6b. These relations 

form several routes starting from some variables and finally pointing 

to PipeRevn. Clearly on the graph, the variable #Leads is the starting 

point of multiple routes to the final goal. In all of these routes, 

#Leads plays a positive factor for PipeRevn, which means increasing 

the former will lead to an increase of the latter in the end. So the first 

strategy might be to generate more leads, i.e. reach out to more 

people to look for potential customers, simply and clearly. 

Another variable related to the goal of the sales data analysts is 

Cost/WL which is the sales pitch invested into each won lead. 

However, the effect of increasing this variable can have both a 

Fig. 6. Strategizing with the Visual Causality Analyst for the sales campaign dataset. (a) The causal graph generated from the dataset showing 
how the sales system works. (b) All the routes pointing to PipeRevn from some variable, indicating possible strategies to increase pipeline 
revenue. Here #Leads and Cost/WL are two variables that all routes start from. (c) Screen shots of linear regression analyses on PipeRevn and 
Cost. Here the purpose is to investigate the effect of Cost/WL on PipeRevn. As the scale of the direct effect of Cost/WL on PipeRevn is larger 
than the indirect effect via Cost, the total effect of rising Cost/WL will be the reduction of PipeRevn. (d) A correlation map view browsing only 
variables in a similar strategizing scenario. However, variables correlated to each other may not necessarily imply any causal relationship. 

Fig. 7. Analyzing heart disease dataset with the Visual Causality Analyst. (a) An original causal graph generated by the new framework. As there 
are multiple categorical variables, many nodes and arrows are colored yellow. (b) The causal graph targeting disease, in which only variables 
and relations relevant to disease are selected and shown. (c) Screen shots of logistic regression analyses on each of the three restECD’s 
categories. Only electrocardiographic type restECD-2.0 is found as a sign of heart disease, due to the positive regression coefficient and small p-
value of disease in its logistic model. (d) Screen shots of logistic regression analyses on each of the four chestPainType’s categories. The last 
type chestPainType-4.0 should be considered positively relevant to heart disease, while other types are either irrelevant or not a sign of heart 
disease. 
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positive and a negative effect on PipeRevn. The positive effect is 

through the variable Cost, which is the salesman’s total investment. 

The negative effect can be both direct and indirect through multiple 

routes. To resolve this conflict, we can refer to the coefficients 

analysis view of the software. Here we present two screen shots in 

Fig. 6c. They show that the direct effect of Cost/WL in the linear 

regression model of PipeRevn is larger than that of the indirect 

relation (Cost/WL→Cost) ×  (Cost→PipeRevn). In addition, the 

coefficient of ExpectROI on PipeRevn is more than twice that of 

Cost, and Cost/WL negatively impacts ExpectROI. Thus, to increase 

PipeRevn we are advised to not increase Cost/WL – in fact, we might 

rather decrease it. 

These two strategies essentially imply that, to increase the 

revenue, each of the company’s salespersons should put more effort 

in exploring new customers. Further, the model indicates that once a 

potential customer has already shown interest, there is no need to 

invest extra promotions. It may even have some negative impact on 

closing the deal. 

The strategic guidance our Visual Causality Analyst can provide 

is explicit and assuring, partly due to its visualization of the casual 

relationships and partly due to its interactive response rates. When 

users see the causal graph, they can visually think and form 

hypotheses that a certain action might potentially lead to a certain 

outcome. Further, via the regression analysis the size of the effect 

can also be measured and communicated. This is a significant 

improvement over the correlation map proposed in prior work (Fig. 

6d), by browsing which, users may learn how two variables are 

correlated in past data (e.g. Cost/WL and ExpectROI, #Leads and 

ExpectROI etc.), but variables strongly correlated to each other may 

not necessarily imply any causal relationship. And thus, adjusting a 

variable just based on the correlation map alone will not necessarily 

lead to the expected change in another variable in the real world.  

5.3 Analyzing Categories: Heart Disease Dataset 

In this final example we will demonstrate how the Visual Causality 

Analyst can also be used to visually analyze the causal relationships 

in medical data that include mixed types of variables. 

Suppose an expert on cardiology has been keeping a collection of 

medical records on his past patients and wishes to identify the most 

effective methods for diagnosing heart diseases. The expert opens 

our software and imports his data, then generates the initial causal 

graph shown in Fig. 7a. Since there are multiple variables that are 

categorical, we observe many nodes and arrows on edges that are 

colored yellow. 

Any edges on the graph directly pointing to and from disease 

indicate either diagnostics (the outgoing edges) or causes (the 

incoming edges) of heart disease. These edges and the causal 

relationships they represent are of greatest interest to the expert. 

From Fig. 7a he learns that restECD, numVessels, maxHeartRate, 

serumChol, chestPainType, and thalassemia are all variables directly 

linked to disease. Thus he unselects all other variables and re-lays 

out the graph, which yields Fig. 7b.  

In Fig. 7b, the categorical variable restECD has three levels 

where each represents a type of electrocardiographic test result. To 

test which type of electrocardiographic result is caused by heart 

disease, we need to consult the logistic regression analysis. Fig. 7c is 

a screen shot of the analysis result targeting each of restECD’s level. 

In the first model, disease has a negative coefficient and a small p-

value, which means restECD-0.0 is not a sign of heart disease, or 

even a sign of a healthy heart. In the second model, although disease 

has a positive coefficient, its p-value is too large. The values of other 

statistical metrics, such as low Chi-Squared value, high model p-

value, low deviance, etc. all indicate that restECD-1.0 is likely 

irrelevant to heart disease diagnosis. The last logistic model, 

restECD-2.0, disease shows both a positive coefficient and a small 

p-value, and therefore this test seems to be a valuable means to 

diagnose an impending heart disease. The expert is satisfied having 

succeeded in finding an effective means for heart disease diagnostics 

from his treasure trove of data,  

A similar process can be conducted on the variable 

chestPainType. The logistic regression analysis targeting each of its 

four categories is shown in Fig. 7d. Here we observe that only 

chestPainType-4.0 has both a positive coefficient and a zero p-value. 

Other statistical features of this model, e.g. high Chi-Square value 

and high deviance also indicate that chestPainType-4.0 should be 

considered a sign of heart disease. Other types of chest pains are 

either irrelevant (chestPainType-1.0) or not a sign of disease 

(chestPainType-2.0 and 3.0). 

There are many more hypotheses that the expert might discover, 

test and prove or disprove given his data and using our software. We 

cannot list them all here. But the case study presented shows that the 

Visual Causality Analyst is well applicable for health sciences data, 

as well as all other scientific dataset with mixed types of variables. 

6 CONCLUSION AND FUTURE WORK 

We have presented the Visual Causal Analyst – the first interactive 
framework for visual causal reasoning and visual causal discovery 
for high-dimensional data. An added novelty of our framework is 
that it supports both numerical and categorical variables, which is 
important for real-world applications. Our interface can serve both as 
a causality exploration environment and as a platform to visually 
demonstrate, explain, and justify causal relations that exist in the 
data with statistical proof provided by linear regression analyses and 
logistic regression analyses. Our framework is general and applicable 
to a wide set of real cases, as demonstrated by our case studies.  

A present limitation of our framework is that causal relations may 
exist and vary in different data clusters. Therefore a prior 
visualization and possibly clustering of the data might be advised. 
Interactive clustering algorithms, such as ClusterSculptor [31], 
would allow users to first isolate an independent data cluster and 
then deduce causalities only on this partial data. 

Future work will also focus on visualizing the test statistics, such 
as R-squared and F-value directly in the visualization. Since the 
comparison of models (that is, configurations with certain causal 
edges missing or added) is a frequent task, we might add an 
information visualization widget that would allow users to compare 
the values of the test statistics for these alternative models and 
convey the statistical relevance of the different values.      

Another frontier is the ability to perform visual causal reasoning 
with time series data. This is of great interest to scientists, policy 
makers, economists, etc. Although we can deal with time series data 
by simply treating time as a data variable, a dedicated visual analytic 
approach will be better, possibly using Granger causality.  

Finally, we should note that causality can be affected by outliers, 
non-linear relationships, heteroskedasticity, and multicollinearity. To 
achieve more statistical robustness, techniques for outlier detection 
and removal, non-linear causality need to be added to our system. 
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