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ABSTRACT 

In my doctoral study, I investigate a visual analytic approach for 
causal inference. The goal of my research is a visual interface that 
leverages inference algorithms but allows human experts endowed 
with domain knowledge and intuition to refute or propose causal 
links. In this research overview, I provide an introduction to my 
research topic, outline the challenges, present a timeline for my 
research progress, and discuss potential future works. 

1 INTRODUCTION 

Recognizing the exact causal relations governing the observed 
phenomena is a fundamental task in science. However, even with 
the emergence of big data, this task remains challenging because it 
requires a fundamental theory of how and why the observed 
phenomena occur. While a number of causal inference algorithms 
have been devised by modern philosophers and statisticians for 
identifying casual relations in multivariate datasets, these 
algorithms typically cannot encode existing domain knowledge, or 
even common sense, to guide their analyses. This in turn leads them 
to hold strong assumptions on data conditions which can rarely be 
satisfied in practice. A remedy to overcome this significant 
shortcoming is to insert a human into the casual inference loop as a 
synergist partner with a visual interface. Such a visual analytic 
approach is named Visual Causality Analysis and is the major focus 
of my doctoral research. 

The pipeline of the visual analytics on causality established in 
my research is illustrated in Fig. 1. The process starts from deriving 
causal dependencies from observational data using automatic 
algorithms (Fig. 1-1), and then parameterizing the causal structure 
with statistical metrics (Fig. 1-2). The set of causal relations among 
variables of a multivariate dataset is usually represented as Directed 
Acyclic Graphs (DAGs) called Causal Graphs/Networks, where 
nodes stand for variables and edges denote causal relations pointing 
from the cause to the effect. A domain user can be involved by 
interacting with the input data to select interesting data block (Fig. 
1-3), generating hypothesis by proposing and refuting causal 
relations to change the DAG structure (Fig. 1-4), and validating the 
hypothesis by observing the evolvement of the parameterized 
model (Fig. 1-5) long with each operation. The primary goal of my 
research is to develop a comprehensive visual analytic framework 
to fulfil this pipeline and can be generally applied to a wide scope 
of data. 

Besides an in-depth understanding of the modern causal 
inference theory, several practical obstacles must be tackled in 
achieving such a visual analytic framework. These practical issues 
include an effective visualization of the causal graph, methods for 
handling heterogenous data in inference, and the capability to infer 
and manage multiple causal models underlying different ranges of 
data. During my doctoral research, preliminary solutions for these 
issues have been proposed, based on which a prototype of the visual 

interface for causality analysis is developed. In this paper, I shall 
provide a brief overview of my research work, as well as propose 
some potential future development for discussion. 

In the remainder of this research overview, I will first give a brief 
introduction of the background knowledge and the prior work most 
relevant for my research in Section 2. Then I will outline the main 
challenges in Section 3. Section 4 will provide a timeline of 
accomplished and planned projects and research. Outlook of my 
future research will be discussed in Section 5. And Section 6 closes 
with conclusion. 

2 BACKGROUND AND RELATED WORK 

My research builds on previous work of causation modeling and 

inference theories, as well as visual analytics research on causality 

analysis interfaces. 

2.1 Causality Modeling and Inference 

At the most basic, a causal relation is defined as a counter-fact, so 

that “ A  causes B ” implies “if A  did not happen B would not 

happen”. Following the seminal work of Pearl [1] and Spirtes[2], 

theories of causality modeling and discovery on multivariate 

datasets have been widely studied. As mentioned, causal relations 

of a dataset can be depicted as causal graphs. A causal graph can 

be parameterized by several causal modeling methods. The two 

most common choices are Bayesian Networks [1] and Structural 

Causal Models (SCM) [3][4]. The former quantifies causal 

relations with conditional probability tables, and the latter with 

linear functions, e.g. linear regressions and logistic regressions.  

Algorithms learning the structure of causal DAGs can be roughly 

categorized into two classes – score-based algorithms and 

constraint-based algorithms. The former typically associate a DAG 

with a score function, e.g. Bayesian Information Criterion [5][6], 

and performs, for instance, a greedy search in the space of all 

possible DAGs. Examples are the algorithms of GES [7] and K2 

[8]. Since the number of possible structures is super-exponential in 

the number of variables, such algorithms often suffer from high 

search cost. In contrast, the constraint-based algorithms build the 

causal networks according to the constraints of dependencies and 

conditional dependencies in the data. These constraints are usually 

learned with conditional independence (CI) tests via partial 

correlation [9] or 𝐺2 statistics [10]. Some well-known algorithms 

are SGS [2], PC [2][11], IC [12], Total Conditioning (TC) [13], and 
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Figure 1: Pipeline of visual causality analysis. 



others, differing in the ways the CI tests are arranged so that the 

algorithm can be more efficient. 

 As the knowledge of data distribution required in BN is usually 

hard to acquire in practice, the SCM is adopted in my work. Also, 

considering both accuracy and efficiency, the algorithms of PC and 

TC are used to infer the causal graph structure. However, it is 

important to note that these automated algorithms are commonly 

based on several strong assumptions of data that may hardly be 

satisfied by real-world applications. For example, they typically 

assume that the observed data is sufficient to recover all true causal 

relations (Faithfulness), and the set of measured variables contains 

all common causes of variable pairs in the set (Causal Sufficiency). 

When these assumptions are violated, false relations can be 

introduced and true relations may be missed. As a consequence, 

none algorithm can guarantee an exact model, which makes human 

involvement necessary. 

2.2 Visual Analytics of Causality 

Visual analytics of causality has become a popular topic in recent 

years, aiming to provide decision support in certain organization 

and to aid hypothesis generation and evaluation in a scientific 

investigation [14]. One of the earliest example is the Growing-

polygons [15] scheme which captures causation in the process 

level, i.e. as a sequence of causal events. It uses animated polygon 

colors and sizes to signify causal semantics. The work of Vigueras 

and Botia [16] considers ordered events in a distributed system as 

causations and visualizes their dependencies as causal graphs. 

Focusing on the upstream-downstream relations of variables, 

ReactFlow [17] visualizes causal relations as pairwise pathways 

connecting duplicated variables in two columns. Some other efforts 

in visual mining of causation include OutFlow [18] and EventFlow 

[19]. Both visualize event sequences as alternative pathways in a 

temporal order and use event chains to explore embedded patterns. 

Liu et al. [20] visualize event streams as flows aligned by event 

types. However, none of these above systems leverages automated 

algorithms for causal discovery, thus they all require significant 

user input to acquire such knowledge.  

3 CHALLENGES 

Besides a thorough understanding of the contemporary causality 
analysis theory, several practical difficulties must be tackled before 
achieving an effective visual analytics approach to causal 
inference, some of which are outlined as following. 

3.1 Causal Graph Visualization 

While a number of layouts are available for visualizing DAGs, the 
goal here is that the story of causal dependencies can be easily 
recognized by users. Although the widely-used force-directed 
approaches could be a feasible choice for demonstrating the overall 
structure of the graph, they often suffer from a dense and 
unpredictable layout. With such layouts, local structures in causal 
sequences can become difficult to observe especially when they are 
part of more complex graphs. However, these local structures can 
often be of great interest to domain users. 

What’s more, semantics of causal relations and their statistic 
measures need to be well encoded, so that users can get an intuitive 
understanding of the causal effects. As SCM is adopted, strength 
and significance of each causal relation as well as the goodness of 
fit of the whole model can be measured by regression coefficients 
and statistics. 

3.2 Visual Model Refinement 

When the decision of refuting or accepting certain causal relations 
cannot be made with users’ domain knowledge, a scoring strategy 

that can be applied to each causal relation as well as the overall 
model is demanded so that the alternative models with or without 
certain relations can be quantitatively compared. Although 
common statistics calculated from regression residuals, e.g. F-
statistics and r-squared, are capable to measure the model goodness 
of fit, they usually do not take model complexity into consideration. 
This implies that just by adding more relations into the model these 
statistics will mostly improve. However, this can potentially lead to 
overfitting, which means that the model is an extremely good fit for 
the dataset from which it was learned, but generates huge errors on 
any other dataset recorded from the same source. Hence, based on 
William of Occam’s parsimony principle, models should be kept as 
simple as possible. The idea is that by adding new relations to a 
causal model we obtain an improvement in its fit to the data to some 
degree, but at the same time the model also becomes “worse” 
because it will be harder to fit to new data. So, the challenge is to 
select a scoring strategy respecting both the goodness of fit and the 
model complexity. A visual analytics scheme is also required so 
that models can be compared visually. 

3.3 Handling Heterogeneous Data  

Real-world problems often have a mix of numeric and categorical 
(ordinal, nominal) data. This stands at odds with current causal 
inference algorithms which can only handle either numeric or 
categorical variables, but not both. Simply binning all numeric 
variables and applying 𝐺2  test can be a plausible solution. 
However, with this approach, not only is there a loss in variable 
value scales, but also the order of bins will be ignored in the 𝐺2 
tests, both of which can lead to huge decrease in result accuracy. 

Another possible solution is to go the other way, which means to 
re-space and re-order the levels of categorical variables so that they 
can be treated as numeric ones and partial correlation can be used 
to do CI tests. Such a strategy has been proposed by Zhang et al. 
[21] applied in correlations studies, which, for each pair of 
categorical and numeric variables, reorders and repositions the 
levels of the categorical variable such that Pearson’s correlation 
between the pair is optimized. Potentially, this can be extended and 
applied in causality analysis. The challenges are that, in a causality 
context, the mapped values (1) must be consistent regarding all 
other variables and (2) better be in a continuous space as this is 
assumed in partial correlation based CI tests. 

3.4 Causal Models from Data Subdivisions 

Another practical challenge is posed by Simpson’s Paradox [22], 

which states that a relation found in the overall data may not hold 

in certain data subdivisions, and conflicting relations buried in 

some specific data ranges may cancel each other so that none can 

be observed in the general population. For example, by bracketing 

the price of a product to lower ranges one may see positive 

correlations with sales, while negative correlations come with a 

higher price range. What’s more, causal relations with opposite 

directions may also exist as feedback loops. For instance, the price 

of a product affects its sales when the sales are low, but a large 

number of sales can also reduce the cost and so lower the price. As 

a result, it is often the case that multiple causal models differing in 

both structure and regression parameters can arise from data 

partitions. Ignoring such facts and always learning the model using 

the whole dataset will potentially lead to faulty relations returned 

by inference algorithms. It would be of great help if such 

disturbances can be reduced and different causal models hiding in 

the data can be revealed. 

What’s more, diagnosing these models by investigating their 

similarities can often reveal interesting knowledge, especially when 

the data is partitioned into a large number of subsets and a 

corresponding number of models are learned.  



4 RESEARCH PROGRESS 

My doctoral research has been progressing along with identifying 

and tackling the challenges of visual causality analysis, and can be 

roughly divided into three phases (Fig. 2). 

4.1 Initial Exploration (18 months) 

At the beginning of my doctoral study, I focused on building the 

foundation for my research by conducting a comprehensive 

literature review on causal inference theories and related works in 

the field of visual analytics. The biggest challenge to me in this 

phase was to gain an accurate understanding of what causality is 

and how it is modeled and inferred statistically. With the 

accumulated theoretical knowledge, I selectively implemented the 

TC [13] and the PC-stable [11] algorithms, which have been used 

as part of my toolbox throughout my research. 

What’s more, based on initial exploration on required analysis of 

causality and referencing the existing works, a prototype of an 

interface was proposed, named Visual Causality Analyst [23](Fig. 

3). The interface visualizes a causal network as an interactive force-

directed 2D graph, where the type of a causal relation (positive, 

negative, or compound, measured by regression coefficients) is 

encoded as edge colors. The interface supports very basic 

interaction of creating, deleting, directing, and reversing causal 

links, as well as filtering edges by their strength. Other detailed 

regression parameters are listed as tables. 

Along with the interface, a new strategy of mapping categorical 

variables’ values regarding all numeric variables was proposed 

(and was latterly named Global Mapping, GM), so that 

heterogeneous data can be analyzed with the inference algorithm as 

well as the new interface. The framework was tested on a few 

illustrative datasets, e.g. the AutoMPG dataset [24].  

4.2 In-depth Research (24 months) 

While effective, the proposed prototype is nevertheless relatively 

too simple. Real world scenarios, however, incur many practical 

difficulties that such a simple tool cannot handle. To devise a 

comprehensive visual analytic framework that can fulfil the visual 

causality analysis pipeline, an in-depth research on required 

analysis was conducted. This was carried out with further review 

of literatures on causality visual analytics and case studies with 

more complex real-world datasets provided by collaborating 

scientists and online resources. 

During this period, the challenges in section 3 were outlined and 

established as the requirements of the new framework. To solve 

each of these problems, a new causal graph visualization is 

designed which renders a richer set of statistic parameters and 

exposes flow of causal sequences in a much more prominent way; 

the Bayesian Information Criterion is adopted to score each relation 

as well as the whole model so that model goodness of fit and model 

complexity are both considered when comparing alternative causal 

models; an improved version of GM is proposed and 

experimentally evaluated in causality contexts; strategies and 

interfaces for learning and diagnosing multiple models from data 

subdivisions are also designed and tested. 

All these new techniques are implemented and integrated in a 

new visual interface named Causal Structure Investigator (CSI), 

which is demonstrated in Fig. 4. With the CSI interface, a user can 

observe potentially attractive data subdivisions with the parallel 

coordinates, and then partition the data by adjusting the brushed 

value range of variables or with clustering algorithms. Multiple 

models can be automatically inferred and labelled in the heatmap, 

with which the user can recognize credible causal models and 

extract reliable relations from all learned models. 

Figure 3: The Visual Causality Analyst visualizing the causal graph 

derived from the AutoMPG dataset [24]. 

Figure 2: My doctor research can be divided into three main phases: Initial Exploration, In-depth Research, and Extension 

Figure 4: The interface of the Causal Structure Investigator, which is 

a comprehensive visual framework for causality analysis. 
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4.3 Extension (12 months) 

During the final phase of my PhD study, I will further extend my 

research on visual causality analysis. A present limitation of my 

current work is that it does not support analysis on time series data, 

which would have many popular applications, such as finance, 

health, etc. A possible solution is to utilize the theory of logic-based 

causality, which can be capable to learn causes of certain events 

within time series. 

I also plan to conduct more application studies applying my 

research on a wider scope of real-world datasets. I will continually 

deepen and renew my understanding and knowledge of causality 

theories as it is still an actively developing field. Finally, I shall 

summarize all my design experience and research findings into a 

conceptual and pragmatic framework of visual causality analysis 

which will become part of my thesis. 

5 FUTURE WORK 

Besides the planed work in my final phase of doctoral research, 

there are many future research on visual causality analysis I would 

like to do, as the topic is far from fully explored. For instance, one 

that might be easily done is a user study on causal graph 

visualization methods, as quite a few has been introduced and their 

ability in delivering causal semantics is still untested. 

Another future work I would like to explore is to gain the ability 

to build causal models utilizing data from different measurements 

and sources but generated by the same causal mechanism, which is 

called the data fusion problem [25] or integrative causal analysis 

[26]. A visual interface supporting such analytical tasks would 

allow users to study scientific systems over a series of data 

collections. 

Finally, causal graphs learned from causality analysis can serve 

as a starting point for prescriptive analytics. Automatic generation 

of such analytics, i.e. narration, is also a promising extension to the 

current work, where specific actions could be recommended given 

a user’s request. 

6 CONCLUSION 

With this research, I intend to explore and broaden the topic of 

visual causality analysis. Based on a comprehensive literature 

review and case studies of several experimental datasets, a few 

specific challenges are identified and the corresponding visual 

analytic solutions are proposed. I will further extend the interface 

in developing and undertake several application studies to establish 

practical guidelines for designing and implementing such interfaces 

for visual causality analysis.  

The participation in the doctoral colloquium would be a great 

opportunity for me to get feedback on my research work and plan, 

and to get suggestions on the selection of my case studies. 
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