

Visual Causality Analysis Made Practical

Jun Wang and Klaus Mueller **Computer Science Department** Stony Brook University

Stony Brook University

Causality Analysis

- Goal Recover causal relations from observations
- Advantages
 - More explicit than correlation analysis
 - "A causes B" vs. "A and B may be associated"
 - More practical than controlled experiments
 - The experiment for testing "smoking causes cancer"

Visual Causality Analysis

- Why taking a Visual Analytics approach?
 - Automated algorithms are not reliable
 - Get users involved with their domain knowledge
 - Make analysis more manageable

Previous Work

- Visual Causality Analyst
 - Operating on a single model
 - Force-directed graph
 - Model refinement with statistical tables
 - Naïve method for processing heterogeneous data

	Regression Anal	ysis:							
	🔊 0: mpg								
1: cylinders	Name	Coef.	Ste	d.Err.	ΤЗ	Stat.	p	value(T)	
0	weight	0.647	0.0	31	-20	619	0	100	
	model year (1 259	0.0	16	15	992	0.0	100	
	origin-1	0.070	0.0	14	-4	884	0.0	100	
	origin-2	-0.006	0.0	16	-0.4	407	0.6	584	
	Intercept	0.628	0.0	19	32.	325	0.0	000	
	R^2	0.799					-		
	R^2 Adi.	0.797							
	F-Test	385.745							
	P-Value (0.000							
	(♥) 2: displacement								
	3: horsepo	wer							
	Name	Coef.		Std.	irr.	T Sta	ıt.	p-value(T))
	displacement	0.689		0.017		39.91	6	0.000	
	Intercept	0.091		0.007		12.49	97	0.000	
	R^2	0.803							1
	R^2 Adj.	0.803							
	F-Test	1,593.2	256						
	P-Value	0.000							
	\land 4: weight								
	Name	Coef.		Std.	rr.	T Sta	ıt.	p-value(T))
	displacement	0.542		0.032	2	16.97	4	0.000	
	horsepower	0.166		0.042	2	3.990)	0.000	1
	Intercept	0.278	_	0.007	1	39.12	23	0.000	1
	R^2	0.848							1
	R^2 Adj.	0.847							
	F-Test	1,081.7	765						
	P-Value	0.000							
	🗢 5: timeTo6	0mph							-
ty: U. Hide Tags									

Current Work

- Causal Structure Investigator
 - Visualizing causal flows
 - Visual model refinement
 - Interface for data subdivisions
 - Managing and pooling of the multiple models learned from data subdivisions

Causal Flows

- Laid out by Breadth-first spanning tree
- Causal relations as paths flowing mostly from left to the right
- Color of path encodes relation type
- Width encodes strength of the relation

Causal Graph of the AutoMPG dataset

canning tree flowing t tion type the relation

Visual Model Refinement

 Measure model goodness with **Bayesian Information Criterion** (BIC)

 $BIC = -2 \ln \hat{L} + k \ln(n)$

- An extra step in parameterization
- The heuristic removing a good relation will lower the quality of the model

Causal Graph of the AutoMPG dataset

Handling Heterogeneous Data

- Global Mapping (GM) strategy (previous method) $v_c(j) \propto \sum_{i=1}^D \Theta_i \rho_i \mu(v_i(j))$
- GM + Un-binning (UB) strategy
 - Random sample in the range to simulate continuous domain
- Experiment evaluation comparing to *Binning*
 - 100 random DAGs and the according data
 - Measure the rebuilding error in Structure Hamming Distance (SHD), True Positive Rate(TPR), and True Discovery Rate (TDR)

Handling Heterogeneous Data

Data Subdivisions

- Simpson's Paradox
 - A relation found in the overall data may not hold in certain subdivisions
- Subdivide data via the parallel coordinate interface
 - Manual brushing
 - By values of dimensions
 - By clustering

Data Subdivisions

- Example the Sales Campaign dataset
 - 600 rows, each represents a salesman
 - Attributes Leads, WonLeads, Opportunities, CostPerWL, ExpectROI, PipeRevn

Data Subdivisions – Multiple Models

Model Pooling

- Purposes
 - Recognize the possible grouping of causal models
 - Pooling by clustering

Summarize the common relations from multiple models

- Pooling by frequency
- Pooling by credibility

$$- C_e(e_j) = \frac{\sum_i \delta_{ij}(F_{max} - F_i)}{N(F_{max} - F_{min})}$$

Model Pooling

- Example the Ocean Chlorophyll dataset
 - Satellite data covers the South Madagascar sea, recording 10 attributes over more than 10 years
 - Rearranged into 13 by 13 (169) geo-locations, each a sub-dataset
 - Derive a model from each sub-dataset

Model Pooling

One More Use Case

• The presidential election dataset – *county level statistics*

Visual Causality Analysis **Made Practical**

Jun Wang, Klaus Mueller {junwang2, mueller}@cs.stonybrook.edu

Thanks for attending!

Stony Brook University

