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• Goal - Recover causal relations from observations

• Advantages

▪ More explicit than correlation analysis

• “A causes B” vs. “A and B may be associated”

▪ More practical than controlled experiments

• The experiment for testing “smoking causes cancer”

Causality Analysis



• Why taking a Visual Analytics approach?

▪ Automated algorithms are not reliable 

▪ Get users involved with their domain knowledge

▪ Make analysis more manageable

Visual Causality Analysis



• Visual Causality Analyst

▪ Operating on a single model

▪ Force-directed graph

▪ Model refinement with 

statistical tables

▪ Naïve method for processing 

heterogeneous data

Previous Work



Current Work

• Causal Structure Investigator

▪ Visualizing causal flows

▪ Visual model refinement

▪ Interface for data subdivisions

▪ Managing and pooling of the 

multiple models learned from 

data subdivisions



• Laid out by Breadth-first spanning tree

• Causal relations as paths flowing 

mostly from left to the right

• Color of path encodes relation type

• Width encodes strength of the relation

Causal Flows

Causal Graph of the AutoMPG dataset



• Measure model goodness with 

Bayesian Information Criterion 

(BIC)

• An extra step in parameterization

• The heuristic – removing a good 

relation will lower the quality of 

the model

Visual Model Refinement

Causal Graph of the AutoMPG dataset



Handling Heterogeneous Data

• Global Mapping (GM) strategy (previous method)

• GM + Un-binning (UB) strategy

▪ Random sample in the range to simulate continuous domain

• Experiment evaluation comparing to Binning

▪ 100 random DAGs and the according data

▪ Measure the rebuilding error in Structure Hamming Distance (SHD), 

True Positive Rate(TPR), and True Discovery Rate (TDR)



Handling Heterogeneous Data



• Simpson’s Paradox

▪ A relation found in the overall data may not hold in certain subdivisions

• Subdivide data via the parallel coordinate interface

▪ Manual brushing

▪ By values of dimensions

▪ By clustering

Data Subdivisions



• Example – the Sales Campaign dataset

• 600 rows, each represents a salesman

• Attributes - Leads, WonLeads, Opportunities, CostPerWL, ExpectROI, 
PipeRevn

Data Subdivisions 



Data Subdivisions – Multiple Models
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Analyzing the Sales Campaign Dataset



• Purposes

▪ Recognize the possible grouping of causal models

• Pooling by clustering

▪ Summarize the common relations from multiple models

• Pooling by frequency

• Pooling by credibility

–

Model Pooling



• Example – the Ocean Chlorophyll dataset

• Satellite data covers the South Madagascar sea, recording 10 attributes over 

more than 10 years

• Rearranged into 13 by 13 (169) geo-locations, each a sub-dataset

• Derive a model from each sub-dataset

Model Pooling



Model Pooling
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Green Cluster Medoid

Green Cluster Pooled

Analyzing the Ocean Chlorophyll  Dataset



• The presidential election dataset – county level statistics

One More Use Case
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